Skip to main content

The Grasses as a Single Genetic System

  • Chapter
Molecular improvement of cereal crops

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 5))

  • 410 Accesses

Abstract

Recent studies have indicated that many plant genomes have regions of common gene content and genetic map colinearity. This is particularly well documented in the grasses, where colinearity has been demonstrated both for recombinational maps using DNA markers and in the orthologous placement of comparable genes. Colinearity in regions of a centiMorgan or less (i.e., microcolinearity) has not been extensively investigated. Preliminary studies demonstrate that gene content, order and orientation are often conserved in small regions of related genomes, but there are frequent exceptions. Results indicate that grass genome colinearity will be a tremendously valuable tool that allows the synergistic pooling of knowledge and biological materials across a broad range of plant species. From this colinear perspective, genes from any grass species can be used for the improvement and understanding of any other grass. However, further investigations across a wide range of species and genomic locations will be needed to determine the limitations of the approach. In the interim, it is important to carefully investigate (rather than assume) the microcolinearity of the syntenic regions that are being analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S., Anderson, J.A., Sorrels, M.E., and Tanksley, S.D. (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet. 241: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Avramova, Z., SanMiguel, P., Georgieva, E., and Bennetzen, J.L. (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize adh1. Plant Cell 7: 1667–1680.

    PubMed  CAS  Google Scholar 

  • Avramova, Z., Tikhonov, A., SanMiguel, P., Jin, Y.-K., Liu, C, Woo, S.-S., Wing, R.A., and Bennetzen, J.L (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J. 10: 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. (1998) The organization and evolution of angiosperm nuclear genomes. Curr. Opin. Plant Biol., in press.

    Google Scholar 

  • Bennetzen, J.L., and Freeling, M. (1993) Grasses as a single genetic system: genome composition, collinearity and complementarity. Trends Genet. 9: 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., and Freeling, M. (1997) The unified grass genome: synergy in synteny. Genome Res. 7: 301–307.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Kellogg, E.A., Lee, M., and Messing, J. (1998) A plant genome initiative. Plant Cell. 10: 488–493.

    CAS  Google Scholar 

  • Bonierbale, M.W., Plaisted, R.L., and Tanksley, S.D. (1988) RFLP maps based on a set of common clones reveals modes of chromosomal evolution in potato and tomato. Genetics. 120:1095–1103.

    PubMed  CAS  Google Scholar 

  • Brown, J., and Sundaresan, V. (1991) A recombination hotspot in the maize A1 intragenic region. Theor. Appl. Genet.. 81: 185–188.

    Article  Google Scholar 

  • Chen, M., SanMiguel, P., Oliviera, A.C., Woo, S.-S., Zhang, H., Wing, R.A., and Bennetzen, J.L. (1997) Microcolinearity in the sh2-homologous regions of the maize, rice and sorghum genomes. Proc. Nat. Acad. Sci. USA 94: 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  • Civardi, L., Xia, Y., Edwards, K.J., Schnable, P.S., and Nikolau, B.J. (1994) The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc. Nat. Acad. Sci. USA. 91: 8268–8272.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., Millan, T., and Gale, M. (1993) Comparative RFLP maps of homeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85: 784–792.

    CAS  Google Scholar 

  • Devos, K.M., Moore, G., and Gale, M.D. (1995) Conservation of marker synteny during evolution. Euphytica 85:367–372.

    Article  CAS  Google Scholar 

  • Donner, H.K. (1986) Genetic fine structure of the bronze locus in maize. Genetics. 113: 1021–1036.

    Google Scholar 

  • Dubcovsky, J., and Dvorak, J. (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics. 140: 1367–1377.

    PubMed  CAS  Google Scholar 

  • Dunford, R.P., Kurata, N., Laurie, D.A., Money, T.A., Minobe, Y, and Moore, G. (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nuc. Acids Res. 23: 2724–2728.

    Article  CAS  Google Scholar 

  • Flavell, R.B., Bennett, M.D., Smith, J.B., and Smith, D.B. (1974) Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12: 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Foote, T., Roberts, M., Kurata, N, Sasaki, T., and Moore, G. (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147: 801–807.

    PubMed  CAS  Google Scholar 

  • Helentjaris, T., Weber, D.L., and Wright, S. (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118: 353–363.

    PubMed  CAS  Google Scholar 

  • Hulbert, S.H., Richter, T.E., Axtell, J.D., and Bennetzen, J.L. (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Nat. Acad. Sci. USA 87: 4251–4255.

    Article  PubMed  CAS  Google Scholar 

  • Kilian, A., Kudrna, D.A., Kleinhofs, A., Yano, M., Kurata, N., Steffenson, B., and Sasaki, T. (1995) Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nuc. Acids Res. 23: 2729–2733.

    Article  CAS  Google Scholar 

  • Kowalski, S.P., Lan T.H., Feldmann, K.A., and Paterson, A.H. (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138: 499–510.

    PubMed  CAS  Google Scholar 

  • Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A., and Schulze-Lefert, P. (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Nat. Acad. Sci. USA. 95: 370–375.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G., Devos, K.M., Wang, Z., and Gale, M. (1995) Grasses, line up and form a circle. Curr. Biol. 5: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H., Lin, Y.R., Li, Z., Schertz, K.F., Doebley, J.F., Pinson, S.R.M., Liu, S.-C, Stansel, J.W., and Irvine, J.E. (1995) Convergent evolution of cereal crops by independent mutations of corresponding genetic loci. Science 269: 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A.H., Lan, T.-H., Reischmann, K.P., Chang, C, Lin, Y.-R., Liu, S.C, Burow, M.D., Kowalski, S.P., Katsar, CS., DelMonte, T.A., Feldmann, K.A., Schertz, K.F., and Wendel, J.F. (1996) Toward a unified genetic map of higher plants transcending the monocot-dicot divergence. Nature Genetics 14: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, W.J., Dennis, E.S., Rhoades, M.M., and Pryor, A.J. (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Nat. Acad. Sci. USA 78: 4490–4494.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, M.G., and Lee, M. (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor. Appl. Genet.. 90: 380–388.

    Article  CAS  Google Scholar 

  • Prince, J.E., Pochard, E., and Tanksley, S.D. (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36: 404–417.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M.M. (1951) Duplicate genes in maize. Amer. Nat. 85: 105–110.

    Article  Google Scholar 

  • Saedler, H., and Gierl, A. (1996) Transposable Elements. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z., and Bennetzen, J.L. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Alferez, S., Richter, T.E., Hulbert, S.H., and Bennetzen, J.L. (1995) The Rp3 disease resistance gene of maize: mapping and characterization of introgessed alleles. Theor. Appl. Genet. 91:25–32.

    Article  CAS  Google Scholar 

  • Shoemaker, R.C., Polzin, K., Labate, J., Specht, J., Brummer, E.C., Olson, T., Young, N., Concibido, V., Wilcox, J., Tamulonis, J.P., Kochert, G., and Boerma, H.R. (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144: 329–338.

    PubMed  CAS  Google Scholar 

  • Snape, J.W., Quarrie, S.A., and Laurie, D.A. (1996) Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica 89: 27–31.

    Article  CAS  Google Scholar 

  • Teutonico, R.A., and Osborn, T.C. (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of 5. napus, B. oleracea, and Arabidopsis thaliana. Theor. Appl. Genet. 89: 885–894.

    Article  CAS  Google Scholar 

  • Yu, G.X., Bush, A.L., and Wise, R.P. (1996) Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum, and Zea mays. Genome 39: 155–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bennetzen, J.L. (1999). The Grasses as a Single Genetic System. In: Vasil, I.K. (eds) Molecular improvement of cereal crops. Advances in Cellular and Molecular Biology of Plants, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4802-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4802-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6016-5

  • Online ISBN: 978-94-011-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics