Skip to main content

Experimental Methods to Derive Bond Energy Data. A Schematic Overview

  • Chapter
  • 258 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 535))

Abstract

This paper is a brief account of the most important experimental methods used to investigate the thermodynamic stability of molecules and chemical bonds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Irikura, K. K., Johnson III, R. D., Minas da Piedade, M. E., and Martinho Simões, J. A., Molecular Energetics — Experimental and Computational Methods in Thermochemistry, manuscript in preparation.

    Google Scholar 

  2. Gaydon, A. G. (1968) Dissociation Energies and Spectra of Diatomic Molecules (3rd ed.), Chapman and Hall, London.

    Google Scholar 

  3. Huber, K. P. and Herzberg, G. (1979) Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York.

    Google Scholar 

  4. Cox, J. D. and Pitcher, G. (1970) Thermochemistry of Organic and Organometallic Compounds, Academic Press, London.

    Google Scholar 

  5. Sunner, S. and Månsson, M. (1979) Combustion Calorimetry, Experimental Chemical Thermodynamics, Vol. 1, Pergamon Press, Oxford.

    Google Scholar 

  6. Pilcher, G. (1992) In Energetics of Organometallic Species (Martinho Simões, J. A., Ed.), NATO-ASI Series no. C367, Kluwer, Dordrecht.

    Google Scholar 

  7. McNaughton, J. L. and Mortimer, C. T. (1975) Differential Scanning Calorimetry, International Review of Science, Physical Chemistry Series Two, Vol. 10 (Skinner, H. A., Ed.), Butterworths.

    Google Scholar 

  8. Wayner, D. D. M. and Parker, V. D. (1993) Acc. Chem. Res. 26, 287.

    Article  CAS  Google Scholar 

  9. Lind, J., Shen, X., Eriksen, T. E., and Merényi, G. (1990) J. Am. Chem. Soc. 112, 479.

    Article  CAS  Google Scholar 

  10. Parker, V. D. (1992) J. Am. Chem. Soc. 114, 7458; ibid. 115, 1201.

    Article  CAS  Google Scholar 

  11. Bordwell, F. G., Cheng, J.-P., and Harrelson, Jr., J. A. (1988) J. Am. Chem. Soc. 110, 1229.

    Article  CAS  Google Scholar 

  12. Bordwell, F. G. and Zhang, X. (1993) Acc. Chem. Res. 26, 510.

    Article  CAS  Google Scholar 

  13. Berkowitz, J. (1979) Photoionization and Photoelectron Spectroscopy, Academic Press, New York.

    Google Scholar 

  14. Holmes, J. L. (1992) Int. J. Mass Spectrom. Ion Proc. 118/119, 381.

    Article  Google Scholar 

  15. Wetzel, D. M. and Brauman, J. I. (1987) Chem. Rev. 87, 607.

    Article  CAS  Google Scholar 

  16. McDonald, R. N, Bianchina Jr., E. J., and Tung, C. C. (1991) J. Am. Chem. Soc. 113, 7115.

    Article  CAS  Google Scholar 

  17. Mead, R. D., Stevens, A. E., and Lineberger, W. C. (1984) In Gas Phase Ion Chemistry (Bowers, M. T., Ed.), Academic Press, New York; Vol. 3, Chapter 22.

    Google Scholar 

  18. Martinho Sirnões, J. A. and Beauchamp, J. L. (1990) Chem. Rev. 90, 629.

    Article  Google Scholar 

  19. Brown, C. E., Ishikawa, Y., Hackett, P. A., and Rayner, D. M. (1990) J. Am. Chem. Soc. 112, 2530.

    Article  CAS  Google Scholar 

  20. Kerbarle, P. (1977) Ann. Rev. Phys. Chem. 28, 445.

    Article  Google Scholar 

  21. Halpern, J. (1990) In Bonding Energetics in Organometallic Compounds (Marks, T. J. Ed.), ACS Symposium Series no. 428, Washington D.C.; Chapter 7.

    Google Scholar 

  22. Squires, R. R. (1992) Acc. Chem. Res. 25, 461.

    Article  CAS  Google Scholar 

  23. Sunderlin, L. S., Wang, D., and Squires, R. R. (1992) J. Am. Chem. Soc. 114, 2788.

    Article  CAS  Google Scholar 

  24. Wenthold, P. G and Squires, R. R. (1994) J. Am. Chem. Soc. 116, 6401.

    Article  CAS  Google Scholar 

  25. Berkowitz, J., Ellison, G. B., and Gutman, D. (1994) J. Phys. Chem. 98, 2744.

    Article  CAS  Google Scholar 

  26. Stevens Miller, A. E.; Miller, T. M. (1992) In Energetics of Organometallic Species (Martinho Sirnões, J. A., Ed.), NATO-ASI Series no. C367, Kluwer, Dordrecht.

    Google Scholar 

  27. Armentrout, P. B. (1992) In Advances in Gas Phase Ion Chemistry (Adams, N. G. and Babcock, L. M., Eds), JAI, Greenwich; Vol. 1.

    Google Scholar 

  28. Armentrout, P. B. (1995) Acc. Chem. Res. 28, 430.

    Article  CAS  Google Scholar 

  29. Kemper, P. R., Bushnell, J., von Elden, G., and Bowers, M. T. (1993) J. Phys. Chem. 97, 52.

    Article  CAS  Google Scholar 

  30. Bushnell, J. E., Kemper, P. R., Maitre, P., and Bowers, M. T. (1994) J. Am. Chem. Soc. 116, 9710.

    Article  CAS  Google Scholar 

  31. Bowers, M. T. (1994) Acc. Chem. Res. 11, 324.

    Article  Google Scholar 

  32. Buchanan, M. V. (1987) Fourier Transform Mass Spectrometry, ACS Symposium Series no. 359, Washington D.C.

    Google Scholar 

  33. Freiser, B. S. (1990) In Bonding Energetics in Organometallic Compounds (Marks, T. J. Ed.), ACS Symposium Series no. 428, Washington D.C.; Chapter 4.

    Google Scholar 

  34. Hop, C. E. C. A., McMahon, T. B., and Willett, G. D. (1990) Int. J. Mass Spectrom. Ion Proc. 101, 191.

    Article  CAS  Google Scholar 

  35. Richardson, D. E. (1992) In Energetics of Organometallic Species (Martinho Sirnões, J. A, Ed.), NATO-ASI Series no. C367, Kluwer, Dordrecht.

    Google Scholar 

  36. Beauchamp, J. L., and van Koppen, P. A. M. (1992) In Energetics of Organometallic Species (Martinho Sirnões, J. A., Ed.), NATO-ASI Series no. C367, Kluwer, Dordrecht.

    Google Scholar 

  37. Benson, S. W. (1976) Thermochemical Kinetics (2nd ed.), Wiley, New York.

    Google Scholar 

  38. Walsh, R. (1992) In Energetics of Organometallic Species (Martinho Sirnões, J. A., Ed.), NATO-ASI Series no. C367, Kluwer, Dordrecht.

    Google Scholar 

  39. Weitz, E. (1994) J. Phys. Chem. 98, 11256.

    Article  CAS  Google Scholar 

  40. Berkowitz, J., Ellison, G. B., and Gutman, D. (1994) J. Phys. Chem. 98, 2744.

    Article  CAS  Google Scholar 

  41. Koenig, T., Scott, T. W., and Franz, J. A. (1990) In Bonding Energetics in Organometallic Compounds (Marks, T. J. Ed.), ACS Symposium Series no. 428, Washington D.C.; Chapter 8.

    Google Scholar 

  42. De Maria, G. (1984) In Thermochemistry and its Applications to Chemical and Biological Systems (Ribeiro da Silva, M. A. V., Ed.), NATO-ASI Series No. C119, Reidel, Dordrecht.

    Google Scholar 

  43. Gingerich, K. A (1979) N.B.S. Special Publication no. 561, Washington, DC.

    Google Scholar 

  44. Grimley, R. T. (1967) In The Characterization of High Temperature Vapors (Margrave, J. L., Ed.), Wiley, New York; Chapter 8.

    Google Scholar 

  45. McMillen, D. F., Lewis, K. E., Smith, G. P., and Golden, D. M. (1982) J. Phys. Chem. 86, 709.

    Article  CAS  Google Scholar 

  46. Lewis, K. E., Golden, D. M., Smith, G. P., and Patrick, R. (1984) J. Am. Chem. Soc. 106, 3905.

    Article  CAS  Google Scholar 

  47. McMillen, D. F. and Golden, D. M. (1982) Ann. Rev. Phys. Chem. 33, 493.

    Article  CAS  Google Scholar 

  48. Cooks, R. G., Patrick, J. S., Kotiaho, T., and McLuckey, S. A. (1994) Mass Spectrom. Rev. 13, 287.

    Article  CAS  Google Scholar 

  49. Peters, K. S. (1994) Angew. Chem. Int. Ed. Engl. 33, 294.

    Article  Google Scholar 

  50. Braslavsky, S. E. and Heibel, G. E. (1992) Chem. Rev. 92, 1381.

    Article  CAS  Google Scholar 

  51. Kanabus-Kaminska, J. M., Gilbert, B. C., and Griller, D. (1989) J. Am. Chem. Soc. 111, 3311

    Article  CAS  Google Scholar 

  52. Wayner, D. D. M., Lusztyk, E., Pagé, D., Ingold, K. U., Mulder, P, Laarhoven, L. J. J., and Aldrich, H. S. (1995) J. Am. Chem. Soc. 117, 8737.

    Article  CAS  Google Scholar 

  53. Adamson, A. W., Vogler, A., Hunkely, H., and Wachter, R. (1978) J. Am. Chem. Soc. 100, 1298.

    Article  CAS  Google Scholar 

  54. Harel, Y. and Adamson, A. W. (1986) J. Phys. Chem. 90, 6693.

    Article  CAS  Google Scholar 

  55. Dias, P. B., Teixeira, C., Dias, A. R., Simoni, J. A., and Martinho Simões, J. A. (1994) J. Organometal. Chem. 482, 111.

    Article  CAS  Google Scholar 

  56. Turner, D. W., Baker, C., Baker, A. D., and Brundle, C. R. (1970) Molecular Photoelectron Spectroscopy, Wiley-Interscience, London.

    Google Scholar 

  57. Green, J. C. (1981) Struct. Bonding 43, 37.

    Article  CAS  Google Scholar 

  58. Houle, F. A. and Beauchamp, J. L. (1979) J. Am. Chem. Soc. 101, 4067.

    Article  CAS  Google Scholar 

  59. Mead, R. D., Stevens, A. E., and Lineberger, W. C. (1984) In Gas Phase Ion Chemistry (Bowers, M. T., Ed.), Academic Press, New York; Vol. 3, Chapter 22.

    Google Scholar 

  60. Berkowitz, J., Ellison, G. B., and Gutman, D. (1994) J. Phys. Chem. 98, 2744.

    Article  CAS  Google Scholar 

  61. Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G. (1988) J. Phys. Chem. Ref. Data 17, suppl. no. 1.

    Google Scholar 

  62. Bartmess, J. E. (1994) J. Phys. Chem. 98, 6420.

    Article  CAS  Google Scholar 

  63. Traeger, J. C. and McLoughlin, R. G. (1981) J. Am. Chem. Soc. 103, 3647.

    Article  CAS  Google Scholar 

  64. Kebarle, P. and Chowdhury, S. (1987) Chem. Rev. 87, 513.

    Article  CAS  Google Scholar 

  65. Kebarle, P. (1992) J. Am. Soc. Mass Spectrosc. 3, 1.

    Article  CAS  Google Scholar 

  66. Sharpe, P. and Kebarle, P. (1993) J. Am. Chem. Soc. 115, 782.

    Article  CAS  Google Scholar 

  67. Meot-Ner (Mautner), M. (1989) J. Am. Chem. Soc. 111, 2830.

    Article  Google Scholar 

  68. Tsang, W. (1981) In Shock Waves in Chemistry (Lifshitz, A., Ed.), Marcel Dekker, New York; Chapter 2.

    Google Scholar 

  69. Eatough, D. J., Christensen, J. J., and Izatt, R. M. (1974) Experiments in Thermometric Titrimetry and Titration Calorimetry, Brigham Young University Press, Provo.

    Google Scholar 

  70. Eatough, D. J. (1970) Anal. Chem. 42, 1208.

    Article  Google Scholar 

  71. Golden, D. M., Spokes, G. N., and Benson, S. W. (1973) Angew. Chem. Int. Ed. Engl. 12, 534.

    Article  Google Scholar 

  72. Smith, G. P. and Patrick, R. (1983) Int. J. Chem. Kinet. 15, 167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martinho Simões, J.A., Ribeiro Da Silva, M.A.V. (1999). Experimental Methods to Derive Bond Energy Data. A Schematic Overview. In: Minas da Piedade, M.E. (eds) Energetics of Stable Molecules and Reactive Intermediates. NATO Science Series, vol 535. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4671-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4671-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5741-4

  • Online ISBN: 978-94-011-4671-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics