Skip to main content

Systematics of Sphingomonas Species that Degrade Xenobiotic Pollutants

  • Chapter
Applied Microbial Systematics

Abstract

Until recently, microbiologists were unable to establish a satisfactory prokaryotic phylogeny, a problem that some suggested was insolvable (Stanier & van Niel, 1962). Traditional methods for determining eukaryotic phylogenies according to cell morphology and physiological characteristics are not readily applicable to the classification of prokaryotes. Further, microbiologists have only been able to study those microorganisms that they could cultivate, and this strongly biased the perception of microbial diversity. Another obstacle that hampered the study of prokaryotic phylogeny is what Olsen et al. (1994) described as the “negative definition” of a prokaryote. Prokaryotes were defined as “lacking eukaryotic features,” and such ideas as “if it is not a eukaryote, it is a prokaryote,” dominated the field. With these underlying assumptions, microbiologists ignored the importance of phylogenetic relationships essential in understanding the nature of any organism, and reduced the study of prokaryotic diversity to the question, “How does E. coli differ from eukaryotes?” The characterization of rRNA nucleotide sequences in the early 1980s changed the paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amann, R.I., Ludwig, W. & Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143–169.

    PubMed  CAS  Google Scholar 

  • Arfmann, H.-A., Timmis, K.N. & Wittich, R.-M. (1997). Mineralization of 4-chlorodibenzofuran by a consortium consisting of Sphingomonas sp. strain RW1 and Burkholderia sp. strain JWS. Applied and Environmental Microbiology 63, 3458–3462.

    PubMed  CAS  Google Scholar 

  • Armengaud, J. & Timmis, K. (1997). Molecular characterization of Fdxl, a putidaredoxin-type [2Fe-2S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. European Journal of Biochemistry 247, 833–842.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, D. L., Drake, G. R., Reeves, R. H., Fredrickson, J.K., White, D.C., Ringelberg, D.B., Chandler, D.P., Romine, M.F., Kennedy, D.W. & Spadoni, C. M. (1997). Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea, sp. nov., and Sphingomonas stygia sp. nov. International Journal of Systematic Bacteriology 47, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P.J., Griffin, P.F.S., Loesel, D.M. & Tyrrell, D. (1974). The lipids of fungi. Progress in the Chemistry of Fats and other Lipids 14, 49–89.

    Article  PubMed  Google Scholar 

  • Biinz, P.V. & Cook, A.M. (1993). Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system. Journal of Bacteriology 175, 6467–6475.

    Google Scholar 

  • Chanama, S. (1996). Molecular Characterization of the Catabolic Pathway of Pentachlorophenol Degradation in Flavobacterium sp. strain ATCC 39723. Ph.D. Dissertation. University of Idaho, USA.

    Google Scholar 

  • Colores, G. M., Radehaus, P.M. & Schmidt, S.K. (1995). Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil. Applied Biochemistry and Biotechnology 54, 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, R.L. (1987). Biodegradation of pentachlorophenol. U.S. patent 4,713,340.

    Google Scholar 

  • Crawford, R.L. & Mohn, W.W. (1985). Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme and Microbiological Technology 7, 617–620.

    Article  CAS  Google Scholar 

  • Crosby, D.G. (1981). Environmental chemistry of pentachlorophenol. Pure and Applied Chemistry 53, 1052–1080.

    Article  Google Scholar 

  • Decker, C.F., Hawkins, R.E., Simon, G.L. (1992). Infections with Pseudomonas paucimobilis. Clinical Infectious Diseases 14, 783–784.

    Article  PubMed  CAS  Google Scholar 

  • Don, R.H., Weightman, A.J., Knackmuss, H.J. & Timmis, K.N. (1985). Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). Journal of Bacteriology 161, 85–90.

    PubMed  CAS  Google Scholar 

  • Dwyer, D.F. & Tiedje, J.M. (1986). Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Applied and Environmental Microbiology 52, 852–856.

    PubMed  CAS  Google Scholar 

  • Ederer, M.M. (1994). PCP Degradation: An Evolutionary Study. Ph.D. Dissertation. University of Idaho, USA.

    Google Scholar 

  • Ederer, M.M., Crawford, R.L., Herwig, R.P. & Orser, C.S. (1997). PCP degradation is mediated by closely related strains of the genus Sphingomonas. Molecular Ecology 6, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Edgehill, R.U. & Finn, R.K. (1983). Microbial treatment of soil to remove pentachlorophenol. Applied and Environmental Microbiology 45, 1122–1125.

    PubMed  CAS  Google Scholar 

  • Eguchi, M., Nishikawa, T., MacDonald, K., Cavicchioli, R., Gottschal, J.C. & Kjelleberg, S. (1996). Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Applied and Environmental Microbiology 62, 1287–1294.

    PubMed  CAS  Google Scholar 

  • Eltis, L.D. & Bolin, J.T. (1996). Evolutionary relationships among extradiol dioxygenases. Journal of Bacteriology 178, 5930–5937.

    PubMed  CAS  Google Scholar 

  • Feng, X., Ou, L.-T. & Ogram, A. (1997). Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain C.F06. Applied and Environmental Microbiology 63, 1332–1337.

    PubMed  CAS  Google Scholar 

  • Forterre. P. (1997). Protein versus rRNA: Problems in rooting the universal tree of life. ASM News 63, 89–95.

    Google Scholar 

  • Fortnagel, P., Harms, H., Wittich, R.-M., Krohn, S., Meyer, H., Sinnwell, V., Wilkes, H. & Francke, W. (1990). Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Applied and Environmental Microbiology 56, 1148–1156.

    PubMed  CAS  Google Scholar 

  • Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R., Magrum, L., Zahlen, L.B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Luehrsen, K.R., Chen, K.N. & Woese, C.R. (1980). The phylogeny of prokaryotes. Science 209, 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson, J.K., Brockman, F.J., Workman, D.J., Li, S.W. & Stevens, T.O. (1991). Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene and other aromatic compounds. Applied and Environmental Microbiology 57, 796–803.

    PubMed  CAS  Google Scholar 

  • Fredrickson, J.K., Balkwill, D.L., Drake, G.R., Romine, M.F., Ringelberg, D.B. & White, D.C. (1995). Aromatic-degrading Sphingomonas isolates from the deep subsurface. Applied and Environmental Microbiology 61, 1917–1922.

    PubMed  CAS  Google Scholar 

  • Govindaswami, M., Schmidt, T.M., White, D.C. & Loper, J.C. (1993). Phylogenetic analysis of a bacterial aerobic degrader of azo dyes. Journal of Bacteriology 175, 6062–6066.

    PubMed  CAS  Google Scholar 

  • Häggblom, M.M., Apajalahti, J.H.A. & Salkinoja-Salonen, M.S. (1988). O-methylation of chlorinated para-hydroxyquinones by Rhodococcus chlorophenolicus. Applied and Environmental Microbiology 54, 1818–1824.

    PubMed  Google Scholar 

  • Haines, J.R. & Alexander, M. (1975). Microbial degradation of polyethylene glycols. Applied Microbiology 29, 621-615.

    Google Scholar 

  • Hakamori, S. (1984). Glycosphingolipids. Scientific American 245, 44–53.

    Google Scholar 

  • Hannum, Y.A. & Bell, R.M. (1989). Function of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243, 500–507.

    Article  Google Scholar 

  • Happe, B., Eltis, L.D., Poth, H., Hedderich, R. & Timmis, K.N. (1993). Characterization of 2,2’,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. Journal of Bacteriology 175, 7313–7320.

    PubMed  CAS  Google Scholar 

  • Harayama, S., Kok, M. & Neidle, E.L. (1992). Functional and evolutionary relationship among diverse dioxygenases. Annual Review in Microbiology 46, 565–601.

    Article  CAS  Google Scholar 

  • Holben, W.E., Schroeter, B.M., Calabrese, V.G.M., Olsen, R.H., Kukor, J.K., Biederbeck, B.O., Smith A.E. & Tiedje, J.M. (1992). Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Applied and Environmental Microbiology 58, 3941–3948.

    PubMed  CAS  Google Scholar 

  • Holmes, B., Owen, R.J., Evans, J., Malnick, H. & Wilcox, W.R. (1977). Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. International Journal of Systematic Bacteriology 27, 133–146.

    Article  Google Scholar 

  • Jenkins, C.L., Andrews, A.G., McQuade, T.J. & Starr, M.P. (1979). The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Current Microbiology 3, 1–4.

    Article  CAS  Google Scholar 

  • Juha, H.A.P., Karpanoja, P. & Salkinoja-Salonen, M.S. (1986). Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. International Journal of Systematic Bacteriology 36, 246–251.

    Article  Google Scholar 

  • Ka, J.O., Holben, W.E. & Tiedje, J.M. (1994a). Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Applied and Environmental Microbiology 60, 1106–1115.

    PubMed  CAS  Google Scholar 

  • Ka, J.O., Holben, W.E. & Tiedje, J.M. (1994b). Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Applied and Environmental Microbiology 60, 1116–1120.

    PubMed  CAS  Google Scholar 

  • Ka, J.O., Holben, W.E. & Tiedje, J.M. (1994c). Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria. Applied and Environmental Microbiology 60, 1121–1128.

    PubMed  CAS  Google Scholar 

  • Karlson, U., Rojo, F., van Elsas, J.D. & Moore, E. (1995). Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas. Systematic and Applied Microbiology 18, 539–548.

    Article  Google Scholar 

  • Kästner, M., Breuer-Jammali, M. & Mahro, B. (1994). Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Applied Microbiological Biotechnology 41, 267–273.

    Article  Google Scholar 

  • Katayama, Y., Nishikawa, S., Murayama, A., Yamasaki, M., Morohoshi, N. & Haraguchi, T. (1988). The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Letters 233, 129–133.

    Article  CAS  Google Scholar 

  • Kawahara, K., Seydel, U., Matsuura, M., Danbara, H., Rietschel, E.T. & Zähringer, U. (1991). Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Letters 292, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, F. & Yamanaka, H. (1986). Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Archives of Microbiology 146, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, F., Fukaya, M., Tani, Y. & Ogata, K. (1977). Identification of polyethylene glycols (PEG)-assimilable bacteria and culture characteristics of PEG 6,000. Journal of Fermentation Technology 55, 429–434.

    CAS  Google Scholar 

  • Kawai, F., Kimura, T., Tani, Y. & Yamada, H. (1984). Involvement of polyethylene glycol (PEG) oxidizing enzyme in the bacterial metabolism of PEG. Agricultural and Biological Chemistry 48, 1349–1351.

    Article  CAS  Google Scholar 

  • Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K. & Kawahara, K. (1994). The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. Journal of Bacteriology 176, 284–290.

    PubMed  CAS  Google Scholar 

  • Keck, A., Klein, J., Judlich, M., Stoltz, A., Knackmuss, H.-J. & Mattes, R. (1997). Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Applied and Environmental Microbiology 63, 3684–3690.

    PubMed  CAS  Google Scholar 

  • Kim, E., Aversano, P.J., Romine, M.F., Schneider, R.P. & Zylstra, G.J. (1996). Homology between genes for aromatic hydrocarbon degradation in surface and deep-surface Sphingomonas strains. Journal of Environmental Microbiology 62, 1467–1470.

    CAS  Google Scholar 

  • Kopczynski, E.D., Bateson, M.M. & Ward, D.M. (1994). Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultured microorganisms. Applied and Environmental Microbiology 60, 746–748.

    PubMed  CAS  Google Scholar 

  • Kudlich, M., Keck, A., Klein, J. & Stolz, A. (1997). Localization of the Enzyme Systems Involved in Anaerobic Reductions of Azo Dyes by Sphingomonas sp. Strain BN6 and Effect of Artificial Redox Mediators on the Rate of Azo Dyes Reduction. Applied and Environmental Microbiology 63, 3691–3694.

    PubMed  CAS  Google Scholar 

  • Lange, C.C. (1994). Molecular Analysis of PCP Degradation by Flavobacterium sp. Strain ATCC 39723. Ph.D. Dissertation. University of Idaho, USA.

    Google Scholar 

  • Lee, J.-Y. & Xun, L. (1997). Purification and characterization of 2,6-dichloro-p-hydroxyquinone chlorohydrolase from Flavobacterium sp. strain ATCC 39723. Journal of Bacteriology 179, 1521–1524.

    PubMed  CAS  Google Scholar 

  • Lee, S.-Y., Bollinger, J., Bezdicek, D. & Ogram, A. (1996). Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Applied and Environmental Microbiology 62, 3787–3793.

    PubMed  CAS  Google Scholar 

  • Leifson, E. (1962). The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. International Bulletin of Bacteriological Nomenclature and Taxonomy 12, 133–153.

    Google Scholar 

  • Leveau, J.H.J., Zehnder, A.J.B. & van der Meer, J.R. (1998). The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). Journal of Bacteriology 180, 2237–2243.

    PubMed  CAS  Google Scholar 

  • Lloyd-Jones, G. & Lau, P.C.K. (1997). Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology 63, 3286–3290.

    PubMed  CAS  Google Scholar 

  • Maidak, B.L., Cole J.R., Parker C.T. Jr., Garrity G.M., Larsen, N., Li B., Lilburn T.G., McCaughey, M.J., Olsen, G.J., Overbeek, R., Pramanik S., Schmidt T.M., Tiedje J.M. & Woese, C.R. (1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Research 27, 171–173.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, K., Lee, H. & Trevors, J.T. (1996). Microbial degradation of pentachlorophenol. Biodegradation 7, 1–40.

    Article  CAS  Google Scholar 

  • McCarthy, D.L., Claude, A.A. & Copley, S.D. (1997). In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Applied and Environmental Microbiology 63, 1883–1888.

    PubMed  CAS  Google Scholar 

  • Mietling, R. & Karlson, U. (1996). Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Applied and Environmental Microbiology 62, 4361–4366.

    Google Scholar 

  • Miyauchi, K., Suh, S.-K., Nagata, Y. & Takagi, M. (1998). Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehaolgenase gene whose product is involved in degradation of γ-hexachlorocyclohexane by Sphingomonas paucimobilis. Journal of Bacteriology 180, 1354–1359.

    PubMed  CAS  Google Scholar 

  • Moore, E.R.B., Wittich, R.-M., Fortnagel, P. & Timmis, K.N. (1993). 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo-p-dioxin-degrading isolate within the new genus Sphingomonas. Letters in Applied Microbiology 17, 117–118.

    Article  Google Scholar 

  • Mueller, J.G., Chapman, P.J., Blattmann, B.O. & Pritchard, P.H. (1990). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology 56, 1079–1086.

    PubMed  CAS  Google Scholar 

  • Mueller, J.G., Lantz, S.E., Ross, D., Colvin, R.J., Middaugh, D.P. & Pritchard, P.H. (1993). Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol. Environmental Science and Technology 27, 691–698.

    Article  CAS  Google Scholar 

  • Nagata, Y., Ohtomo, R., Miyauchi, K., Fukuda, M., Yano, K. & Takagi, M. (1994). Cloning and sequencing of a 2,5-dichloro-2,5-cyclohexadiene-l,4-diol dehydrogenase gene involved in degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. Journal of Bacteriology 176, 3117–3125.

    PubMed  CAS  Google Scholar 

  • Nagata, Y., Miyauchi, K., Damborsky, J., Manova, K., Ansorgova, A. & Takagi, M. (1997). Purification and characterization of a haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexanedegrading bacterium, Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology 63, 3707–3710.

    PubMed  CAS  Google Scholar 

  • Nishikawa, S., Sonoki, T., Kasahara, T., Obi, T., Kubota, S., Kawai, S., Morohoshi, N. & Katayama, Y. (1998). Cloning and sequencing of the Sphingomonas (Pseudomonas) paucimobilis gene essential for the o- demethylation of vanillate and syringate. Applied and Environmental Microbiology 64, 836–842.

    PubMed  CAS  Google Scholar 

  • Nishiyama, M., Senoo, K., Wada, H. & Matsumoto, S. (1992). Identification of soil micro-habitats for growth, death and survival of a bacterium, gamma-1,2,3,4,5,6-hexachlorocyclohexane-assimilating Sphingomonas paucimobilis, by fractionation of soil. FEMS Microbiology Ecology 101, 145–150.

    Article  CAS  Google Scholar 

  • Nishiyama, M., Senoo, K. & Matsumoto, S. (1993). Establishment of gamma-1,2,3,4,5,6-hexachlorocyclohexane-assimilating bacterium, Sphingomonas paucimobilis strain SS86, in soil. Soil Biological Biochemistry 25, 769–774.

    Article  CAS  Google Scholar 

  • Nohynek, L.J., Suhonen, E.L., Nurmiaho-Lassila, E.L., Hantula J. & Salkinoja-Salonen M. (1995). Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Systematic and Applied Microbiology 18, 527–538.

    Article  Google Scholar 

  • Obradors, U. & Aguilar, J. (1991). Efficient biodegradation of high molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzen. Applied and Environmental Microbiology 57, 2383–2388.

    PubMed  CAS  Google Scholar 

  • Olsen G.J. (1987). The earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia on Quantitative Biology 52, 825–838.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.J., Woese, C.R. & Overbeek, R. (1994). The winds of (evolutionary), change: Breathing new life into Microbiology. Journal of Bacteriology 176, 1–6.

    PubMed  CAS  Google Scholar 

  • Orser, C.S. & Lange, C.C. (1994). Molecular analysis of pentachlorophenol degradation. Biodegradation 5, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Orser, C.S., Lange, C.C., Xun, L., Zahrt, T.C. & Schneider, B.J. (1993). Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol 4-monooxygenase gene in Escherichia coli. Journal of Bacteriology 175, 411–416.

    PubMed  CAS  Google Scholar 

  • Orser, C.S., Xun, L. & Lange, C.C. (1994). Genes and enzymes involved in the microbial degradation of pentachlorophenol and used in bioremediation applications. U.S. patent 5,363,787.

    Google Scholar 

  • Orser, C.S., Xun, L. & Lange, C.C. (1996). Genes and enzymes involved in the microbial degradation of pentachlorophenol and used in bioremediation applications. U.S. patent 5,512,478.

    Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J. & Olsen, G.J. (1986). The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 11-55.

    Google Scholar 

  • Palleroni N.J., Kunisawa R., Contopoulou R. & Doudoroff M. (1973). Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23, 333–339.

    Article  CAS  Google Scholar 

  • Paszczynski, A. & Crawford, R.L. (1995). Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnological Progress 11, 368–379.

    Article  CAS  Google Scholar 

  • Pollock, T.J. (1993). Gellan-related Polysaccharides and the genus Sphingomonas. Journal of General Microbiology 139, 1939–1945.

    Article  CAS  Google Scholar 

  • Pollock, T.J., van Workum, W.A.T., Thorne, L., Mikolajczak, M.J., Yamazaki, M., Kijne, J.W. & Armentrout, R.W. (1998). Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. Journal of Bacteriology 180, 586–593.

    PubMed  CAS  Google Scholar 

  • Radehaus, P. & Schmidt, S.K. (1992). Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Applied and Environmental Microbiology 58, 2879–2885.

    PubMed  CAS  Google Scholar 

  • Rao, K.R. (1978). Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology. New York: Plenum Press.

    Google Scholar 

  • Resnick, S.M. & Chapman, P.J. (1994). Physiological properties and substrate specificity of a pentachlorophenoldegrading Pseudomonas species. Biodegradation 5, 47–54.

    PubMed  CAS  Google Scholar 

  • Reysenbach, A.L., Giver, L.J., Wickham, G.S. & Pace, N.R. (1992). Differential amplification of rRNA genes by polymerase chain reaction. Applied and Environmental Microbiology 58, 3417–3418.

    PubMed  CAS  Google Scholar 

  • Richau, J.A., Choquenet, D., Fialho, A.M., Moreira, L.M. & Sá-Correia, I. (1997). The biosynthesis of the exopolysaccharide gellan results in the decrease of Sphingomonas paucimobilis tolerance to copper. Enzyme and Microbial Technology 20, 510–515.

    Article  CAS  Google Scholar 

  • Saber, D.L. & Crawford, R.L. (1985). Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Applied and Environmental Microbiology 50, 1512–1518.

    PubMed  CAS  Google Scholar 

  • Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn G.T., Erlich H.A. & Arnheim N. (1985). Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S., Wittich R.-M., Erdmann D., Wilkes H., Francke W. & Fortnagel P. (1992). Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Applied and Environmental Microbiology 58, 2744–2750.

    PubMed  CAS  Google Scholar 

  • Schmidt, S., Fortnagel, P. & Wittich, R.M. (1993). Biodegradation and transformation of 4,4’-and 2,4-dihalophenyl ethers by Sphingomonas sp. strain SS33. Applied and Environmental Microbiology 59, 3931–3933.

    PubMed  CAS  Google Scholar 

  • Schmidt, S.K., Colores, G.M., Hess, T.F. & Radehaus, P.M. (1995). A simple method for quantifying activity and survival of microorganisms involved in bioremediation processes. Applied Biochemistry and Biotechnology 54, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Sly, L.I., Cahill, M.M., Majeed, K. & Jones, G. (1997). Reassessment of the phylogenetic position of Caulobacter subvibrioides. International Journal of Systematic Bacteriology 47, 211–213.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E. & Goebel, B.M. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44, 846–849.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., Murray, R.G.E. & Triiper, H.G. (1988). Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “Purple bacteria and their relatives”. International Journal of Systematic Bacteriology 38, 321–325.

    Article  Google Scholar 

  • Stahl, D.A., Key, R., Flesher, B. & Smit, J. (1992). The phylogeny of marine and freshwater caulobacters reflects their habitat. Journal of Bacteriology 174, 2193–2198.

    PubMed  CAS  Google Scholar 

  • Stanlake, G.J. & Finn, R.K. (1982). Isolation and characterization of a pentachlorophenol-degrading bacterium. Applied and Environmental Microbiology 44, 1421–1427.

    PubMed  CAS  Google Scholar 

  • Stanier, R.Y. & van Niel, C.B. (1962). The concept of a bacterium. Archives of Microbiology 42, 17–35.

    CAS  Google Scholar 

  • Steiert, J.G. & Crawford, R.L. (1988). Catabolism of pentachlorophenol by a Flavobacterium sp. Biochemical and Biophysical Research Communications 141, 825–830.

    Article  Google Scholar 

  • Stewart, C.-B. (1993). The powers and pitfalls of parsimony. Nature 361, 603–607.

    Article  PubMed  CAS  Google Scholar 

  • Stillwell, L.C., Thurston, S.J., Schneider, R.P., Romine, M.F., Fredrickson, J.K. & Saffer, J.D. (1995). Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199. Journal of Bacteriology 177, 4537–4539.

    PubMed  CAS  Google Scholar 

  • Stringfellow, W.T. & Aitken, M. (1994). Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Canadian Journal of Microbiology 40, 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. (1991). PAUP: Phylogenetic Analysis Using Parsimony 3.0s. Illinois Natural History Survey, USA: Champaigin, Illinois.

    Google Scholar 

  • Takeuchi, M., Kawai, F., Shimada, Y. & Yokota, A. (1993). Taxonomic study of polyethylene glycol-utilizing bacteria: Emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Systematic and Applied Microbiology 16, 227–238.

    Article  CAS  Google Scholar 

  • Takeuchi, M., Sawada, H., Oyaizu, H. & Yokota, A. (1994). Phylogenetic evidence for Sphingomonas and Rhizomonas as non-photosynthetic members of the alpha-subgroup of the Proteobacteria. International Journal of Systematic Bacteriology 44, 308–314.

    Article  PubMed  CAS  Google Scholar 

  • United States Environmental Protection Agency (1984). Wood preservative pesticides: creosote, pentachlorophenol, and the inorganic arsenicals. EPA Office of Pesticide Programs, Registration Division. Washington D.C.

    Google Scholar 

  • Uotila, J.S., Kitunen, V.H., Apajalahti, J.H.A. & Salkinoja-Salonen, M.S. (1992). Environment-dependent mechanism of dehalogenation by Rhodococcus chlorophenolicus PCP-1. Applied MicrobiologicalBiotechnology 38, 408–412.

    CAS  Google Scholar 

  • Van Bruggen, A.H.C., Jochimsen, K.N., Steinberger, E.M., Segers, P. & Gillis, M. (1993). Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. In rRNA Superfamily IV. International Journal of Systematic Bacteriology 43, 1–7.

    Article  PubMed  Google Scholar 

  • Van der Meer, J.R., de Vos, W.M., Harayama, S. & Zehnder, A.J.B. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews 56, 677–694.

    PubMed  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandier, O., Kichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P. & Trüper, H.G. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology 37, 463–464.

    Article  Google Scholar 

  • White, D.C. (1996). Lipid biomarker analysis for in situ microbial community ecology. ASM General Meeting, New Orleans, Session 65; Application of Molecular Techniques for Environmental Problems.

    Google Scholar 

  • Wild, S.R., Harrad, S.J. & Jones, K.C. (1993). Chlorophenols in digested U.K. sewage sludges. Water Research 27, 1527–1534.

    Article  CAS  Google Scholar 

  • Wiese, A., Reiners, J.O., Brandenburg, K., Kawahara, K., Zähringer, U. & Seydel, U. (1996). Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation. Biophysical Journal 70, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Wilkes, H., Wittich, R.-M., Timmis, K.N., Fortnagel, P. & Franke, W. (1996). Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RWl. Applied and Environmental Microbiology 62, 367–371.

    PubMed  CAS  Google Scholar 

  • Wittich, R.M., Wilkes, H., Sinnwell, V., Francke, W. & Fortnagel, P. (1992). Metabolism of dibenzop-dioxin by Sphingomonas sp. strain RWl. Applied and Environmental Microbiology 58, 1005–1010.

    PubMed  CAS  Google Scholar 

  • Woese, C.R. (1987). Bacterial evolution. Microbiological Reviews 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C.R. (1991). The use of ribosomal RNA in reconstructing evolutionary relationships among bacteria. In: Evolution at the Molecular Level, pp 1–24. Edited by R.K. Selander, A. G. Clark & T. S. Whittam. Sinauer Associates, Inc., Sunderland, Mass.

    Google Scholar 

  • Woese, C.R. (1994) There must be a prokaryote somewhere: Microbiology’s search for itself. Microbiological Reviews 58, 1–9.

    PubMed  CAS  Google Scholar 

  • Woese, C.R. & Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences USA 74, 5088–5090.

    Article  CAS  Google Scholar 

  • Xu L., Resing, K., Lawson, S.L., Babbit P.C. & Copley, S.D. (1999). Eviddence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 38, 7659–7669.

    Article  PubMed  CAS  Google Scholar 

  • Xun, L. & Orser, C.S. (1991). Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA). and nucleotide sequence of the corresponding gene (pcpA). Journal of Bacteriology 173, 2920–2926.

    PubMed  CAS  Google Scholar 

  • Xun, L., Topp, E. & Orser, C.S. (1992a). Diverse substrate range of a Flavobacterium pentachlorophenol hydrolase and reaction stoichiometries. Journal of Bacteriology 174, 2898–2902.

    PubMed  CAS  Google Scholar 

  • Xun, L., Topp, E. & Orser, C.S. (1992b). Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. Journal of Bacteriology 174, 8003–8007.

    PubMed  CAS  Google Scholar 

  • Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. (1990). Proposal of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiological Immunology 34, 99–119.

    CAS  Google Scholar 

  • Yamanaka, K. & Kawai, F. (1989). Purification and characterization of constitutive polyethylene glycol (PEG). dehydrogenase of PEG 4,000-utilizing Flavobacterium sp. no.203. Journal of Fermentation Technology 67, 324–330.

    CAS  Google Scholar 

  • Yamamoto, A., Yano, I., Masui, M. & Yabbuchi, M. (1978). Isolation of a novel sphingolipid containing glucuronic acid and 2-hydroxy fatty acid from Flavobacterium devorans ATCC 10829. Journal of Biochemistry 83, 1213–1216.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. & Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology 8, 357–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ederer, M.M., Crawford, R.L. (2000). Systematics of Sphingomonas Species that Degrade Xenobiotic Pollutants. In: Priest, F.G., Goodfellow, M. (eds) Applied Microbial Systematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4020-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6518-1

  • Online ISBN: 978-94-011-4020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics