Skip to main content

The Time-Resolved Fluorescence Quenching Method for the Study of Micellar Systems and Microemulsions : Principle and Limitations of the Method

  • Chapter
The Structure, Dynamics and Equilibrium Properties of Colloidal Systems

Part of the book series: NATO ASI Series ((ASIC,volume 324))

Abstract

The application of time-resolved fluorescence quenching method to the determination of the size of micelles and oil-in-water or water-in-oil microdroplets is described. It is also shown that this method gives information on dynamic processes occurring in micellar solutions and microemulsions. In this account the scope and limitations of the method are discussed with special emphasis placed on the assumptions used to interpret the fluorescence decay data and on the selection of appropriate probe and quencher molecules. Recent developments are also briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zana, R. (1987) “Luminescence probing methods”, in R. Zana (ed.), Surfactant Solutions: New Methods of Investigation, Marcel Dekker, New-York, pp 241–294.

    Google Scholar 

  2. Grieser, F. and Drummond, C.J. (1988) “The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques”, J. Phys. Chem. 92, 5580–5593.

    Article  CAS  Google Scholar 

  3. Zana, R. and Lang, J. (1990) “Recent developments in fluorescence probing of micellar solutions and microemulsions”, to appear in Colloids Surf.

    Google Scholar 

  4. Dorrance, R.C. and Hunter, T.F. (1974) “Absorption and emission studies of solubilization in micelles. Part 2. — Determination of aggregation number and solubilisate diffusion in cationic micelles”, J. Chem. Soc. Faraday Trans. 1, 70, 1572–1580.

    Google Scholar 

  5. Turro, N.J. and Yekta, A. (1978) “Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles”, J. Am. Chem. Soc. 100, 5951–5952.

    Article  CAS  Google Scholar 

  6. Koglin, P.K.F., Miller, D.J., Steinwandel, J. and Hauser, M. (1981) “Determination of micelle aggregation numbers by energy transfer”, J. Phys. Chem. 85, 2363–2366.

    Article  CAS  Google Scholar 

  7. Infelta, P.P. (1979) “Fluorescence quenching in micellar solutions and its application to the determination of aggregation numbers”, Chem. Phys. Lett. 61, 88–91.

    Article  CAS  Google Scholar 

  8. Infelta, P.P., Grätzel, M. and Thomas, J.K. (1974) “Luminescence decay of hydrophobic molecules solubilized in aqueous micellar systems. A kinetic model”, J. Phys. Chem. 78, 190–195.

    Article  CAS  Google Scholar 

  9. Tachiya, M. (1975) “Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles”, Chem. Phys. Lett. 33, 289–292.

    Article  CAS  Google Scholar 

  10. Rodgers, M.A.J. and Da Silva E Wheeler, M.F. (1978) “Quenching of fluorescence from pyrene in micellar solutions by cationic quenchers”, Chem. Phys. Lett. 53, 165–169.

    Article  CAS  Google Scholar 

  11. Atik, S.S. and Singer, L.A. (1978) “Nitroxyl radical quenching of the pyrene fluorescence in micellar environments. Development of a kinetic model for steady-state and transient experiments”, Chem. Phys. Lett. 59, 519–524.

    Article  CAS  Google Scholar 

  12. Pfeffer, G., Lami, H., Laustriat, G. and Coche, A. (1963) “Détermination des constantes de temps de scintillateurs”, C.R. Hebd. Séances Acad. Sci. 257, 434–437.

    Google Scholar 

  13. Atik, S.S., Nam, M. and Singer, L. (1979) “Transient studies on intramicellar excimer formation. A useful probe of the host micelle”, Chem. Phys. Lett. 67, 75–80.

    Article  CAS  Google Scholar 

  14. Maestri, M., Infelta, P.P. and Grätzel, M. (1978) “Kinetics of fast light-induced redox processes in micellar systems: Intramicellar electron transfer”, J. Chem. Phys. 69, 1522–1526.

    Article  CAS  Google Scholar 

  15. Tachiya, M. (1980) “Kinetics of quenching of luminescent probes in micellar systems. II”, J. Chem. Phys. 76, 340–348.

    Article  Google Scholar 

  16. Hunter, T.F. (1980) “The distribution of solubilisate molecules in micellar assemblies”, Chem. Phys. Lett. 75, 152–155.

    Article  CAS  Google Scholar 

  17. Atik, S.S. and Thomas, J.K. (1981) “Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another”, J. Am. Chem. Soc. 103, 3543–3550.

    Article  CAS  Google Scholar 

  18. Rothenberger, G., Infelta, P.P. and Grätzel, M. (1979) “Kinetic and statistical features of triplet energy transfer processes in micellar assemblies”, J. Phys. Chem. 83, 1871–1876.

    Article  CAS  Google Scholar 

  19. Miller, D.J., Klein, U.K.A. and Hauser, M. (1980) “Occupation numbers in micellar solubilisation — An excimer study”, Ber. Bunsenges. Phys. Chem. 84, 1135–1140.

    Article  CAS  Google Scholar 

  20. Siemiarczuk, A. and Ware, W.R. (1989) “A novel approach to analysis of pyrene fluorescence decays in sodium dodecylsulfate micelles in the presence of Cu2+ ions based on the maximum entropy method”, Chem. Phys. Lett. 160, 285–290.

    Article  CAS  Google Scholar 

  21. Atik, S.S. and Thomas, J.K. (1981) “Transport of ions between water pools in alkanes”, Chem. Phys. Lett. 79, 351–354.

    Article  CAS  Google Scholar 

  22. Fletcher, P.D.I, and Robinson, B.H. (1981) “Dynamic processes in water-in-oil microemulsions”, Ber. Bunsenges. Phys. Chem. 85, 863–867.

    Article  CAS  Google Scholar 

  23. Fletcher, P.D.I., Howe, A.M. and Robinson, B.H. (1987) “The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion”, J. Chem. Soc., Faraday Trans. 1, 83, 985–1006.

    Google Scholar 

  24. Lang, J., Jada, A. and Malliaris, A. (1988) “Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2- ethylhexyl)sulfosuccinate”, J. Phys. Chem. 92, 1946–1953 and references therein.

    Article  CAS  Google Scholar 

  25. Zana, R. and Weill, C. (1985) “Effect of temperature on the aggregation behaviour of nonionic surfactants in aqueous solutions”, J. Physique Lett. 46, L-953–L-960.

    Article  Google Scholar 

  26. Dederen, J.C., Van der Auweraer, M. and De Schryver, F.C. (1981) “Fluorescence quenching of solubilized pyrene and pyrene derivatives by metal ions in SDS micelles”, J. Phys. Chem. 85, 1198–1202.

    Article  CAS  Google Scholar 

  27. Grieser, F. (1981) “The dynamic behaviour of I- in aqueous dodecyltrimethyl-ammonium chloride solutions. A model for counter-ion movement in ionic micellar systems”, Chem. Phys. Lett. 83, 59–64.

    Article  CAS  Google Scholar 

  28. Löfroth, J.-E. and Almgren, M. (1982) “Quenching of pyrene fluorescence by alkyl iodides in sodium dodecyl sulfate micelles”, J. Phys. Chem. 86, 1636–1641.

    Article  Google Scholar 

  29. Croonen, Y., Geladé, E., Van der Zegel, M., Van der Auweraer, M., Vandendriessche, H., De Schryver, F.C. and Almgren, M. (1983) “Influence of salt, detergent concentration, and temperature on the fluorescence quenching of 1-methylpyrene in sodium dodecyl sulfate with m-dicyanobenzene”, J. Phys. Chem. 87, 1426–1431.

    Article  CAS  Google Scholar 

  30. Malliaris, A., Lang, J., Sturm, J. and Zana, R. (1987) “Intermicellar migration of reactants: effect of additions of alcohols, oils and electrolytes”, J. Phys. Chem. 91, 1475–1481.

    Article  CAS  Google Scholar 

  31. Almgren, M., Löfroth, J.-E. and Van Stam, J. (1986) “Fluorescence decay kinetics in monodisperse confinements with exchange of probes and quenchers”, J. Phys. Chem. 90, 4431–4437.

    Article  CAS  Google Scholar 

  32. Almgren, M., Van Stam, J., Swarup, S. and Löfroth, J.-E. (1986) “Structure and transport in the microemulsion phase of the system Triton X-100-toluene-water”, Langmuir, 2, 432–438.

    Article  CAS  Google Scholar 

  33. Dederen, J.C. and Van der Auweraer, M. and De Schryver, F.C. (1979) “Quenching of 1-methylpyrene by Cu2+ in sodium dodecylsulfate. A more general kinetic model”, Chem. Phys. Lett. 68, 451–454.

    Article  CAS  Google Scholar 

  34. Grieser, F. and Tausch-Treml, R. (1980) “Quenching of pyrene fluorescence by single and multivalent metal ions in micellar solutions”, J. Am. Chem. Soc. 102, 7258–7264.

    Article  CAS  Google Scholar 

  35. Van der Auweraer, M., Dederen, C, Palmans-Windels, C. and De Schryver, F.C. (1982) “Fluorescence quenching by neutral molecules in sodium dodecyl sulfate micelles”, J. Am. Chem. Soc. 104, 1800–1804.

    Article  Google Scholar 

  36. Infelta, P.P. and Grätzel, M. (1979) “Statistics of solubilizate distribution and its application to pyrene fluorescence in micellar systems. A concise kinetic model”, J. Chem. Phys. 70, 179–186.

    Article  CAS  Google Scholar 

  37. Krisnagopal Mandal, Hauenstein, B.L., Jr., Demas, J.N. and DeGraff, B.A. (1983) “Interactions of ruthenium (H) photosensitizers with Triton X-100”, J. Phys. Chem. 87,328–331.

    Article  CAS  Google Scholar 

  38. Yekta, A., Aikawa, M. and Turro, N.J. (1979) “Photoluminescence methods for evaluation of solubilization parameters and dynamics of micellar aggregates. Limiting cases which allow estimation of partition coefficients, aggregation numbers, entrance and exit rates”, Chem. Phys. Lett. 63, 543–548.

    Article  CAS  Google Scholar 

  39. Verbeeck, A. and De Schryver, F.C. (1987) “Fluorescence quenching in inverse micellar systems: possibilities and limitations”, Langmuir 3, 494–500.

    Article  CAS  Google Scholar 

  40. Almgren, M. and Löfroth, J.-E. (1982) “Effects of polydispersity on fluorescence quenching in micelles”, J. Phys. Chem. 76, 2734–2743.

    Article  CAS  Google Scholar 

  41. Löfroth, J.-E. and Almgren, M. (1984) “Fluorescence quenching aggregation numbers in a non-ionic micelle solution”, in K.L. Mittal and B. Lindmann (Eds.), Surfactants in Solutions, Plenum Press, New-York, pp 627–643.

    Google Scholar 

  42. Warr, G.G. and Grieser, F. (1986) “Determination of micelle size and polydispersity by fluorescence quenching”, J. Chem. Soc, Faraday Trans. 1, 82, 1813–1828.

    Google Scholar 

  43. Chen, J.-M., Su, T.-M. and Mou, C.Y. (1986) “Size of sodium dodecyl sulfate micelles in concentrated salt solutions”, J. Phys. Chem. 90, 2418–2421.

    Article  CAS  Google Scholar 

  44. Almgren, M., Alsins, J., Mukhtar, E. and Van Stam, J. (1988) “Fluorescence quenching dynamics in rodlike micelles”, J. Phys. Chem. 92, 4479–4483.

    Article  CAS  Google Scholar 

  45. Warr, G.G., Grieser, F. and Evans, D.F. (1986) “Determination of micelle size and polydispersity by fluorescence quenching”, J. Chem. Soc., Faraday Trans. 1, 82, 1829–1838.

    Google Scholar 

  46. Warr, G.G., Drummond, C.J., Grieser, F., Ninham, B.W. and Evans, D.F. (1986) “Aqueous solution properties of nonionic n-dodecyl b-D-maltoside micelles”, J. Phys. Chem. 90, 4581–4586.

    Article  CAS  Google Scholar 

  47. Almgren, M., Alsins, J., Van Stam, J. and Mukhtar, E. (1988) “The micellar sphere-to-rod transition in CTAC-NaC103. A fluorescence quenching study”, Prog. Colloid Polym. Sci. 76, 68–74.

    Article  CAS  Google Scholar 

  48. Warr, G.G., Magid, L.J., Caponetti, E. and Martin, C.A. (1988) “Micellar growth and overlap in aqueous solutions of hexadecyl- octyldimethylammonium bromide: a fluorescence quenching and small-angle neutron scattering study”, Langmuir 4, 813–817.

    Article  CAS  Google Scholar 

  49. Lang, J. (1990) “Surfactant aggregation number and polydispersity of SDS + 1-pentanol mixed micelles in brine by time-resolved fluorescence quenching”, J. Phys. Chem., to appear.

    Google Scholar 

  50. Brown, W., Rymdén, R., Van Stam, J., Almgren, M. and Svensk, G. (1989) “Static and dynamic properties of nonionic amphiphile micelles: Triton X-100 in aqueous solution”, J. Phys. Chem. 93, 2512–2519.

    Article  CAS  Google Scholar 

  51. Espenscheid, W.F., Kerker, M. and Matijevic, E. (1964) “Logarithmic distribution functions for colloidal particles”, J. Phys. Chem. 68, 3093–3097.

    Article  CAS  Google Scholar 

  52. Yan, Y.D. and Clarke, J.H.R. (1989) “In situ determination of particle size distributions in colloids”, Adv. Colloid Interface Sci. 29, 277–318.

    Article  CAS  Google Scholar 

  53. Van der Auweraer, M. and De Schryver, F.C. (1987)”On the intramicellar fluorescence quenching rate constant in cylindrical micelles”, Chem. Phys. 111, 105–112.

    Article  Google Scholar 

  54. Van der Auweraer, M., Reekmans, S., Boens, N. and De Schryver, F.C. (1989) “The intramicellar quenching in cylindrical micelles. II”, Chem. Phys. 132, 91–113.

    Article  Google Scholar 

  55. Löfroth, J.-E. (1985) “Deconvolution of single photon counting data with a reference method and global analysis”, Eur. Biophys. J. 13, 45–58.

    Article  Google Scholar 

  56. Löfroth, J.-E. (1986) “Time-resolved emission spectra, decay-associated spectra, and species-associated spectra”, J. Phys. Chem. 90, 1160–1168.

    Article  Google Scholar 

  57. Boens, N., Malliaris, A., Van der Auweraer, M., Luo, H. and De Schryver, F.C. (1988) “Simultaneous analysis of single-photon timing data with a reference method: application to a Poisson distribution of decay rates”, Chem. Phys. 121, 199–209.

    Article  CAS  Google Scholar 

  58. Boens, N., Luo, H., Van der Auweraer, M., Reekmans, S., De Schryver, F.C. and Malliaris, A. (1988) “Simultaneous analysis of fluorescence decay curves for the one-step determination of the mean aggregation number of aqueous micelles”, Chem. Phys. Lett. 146, 337–342.

    Article  CAS  Google Scholar 

  59. Luo, H., Boens, N., Van der Auweraer, M., De Schryver, F.C. and Malliaris, A. (1989) “Simultaneous analysis of time-resolved fluorescence quenching data in aqueous micellar systems in the presence and absence of added alcohol”, J. Phys. Chem. 93, 3244–3250.

    Article  CAS  Google Scholar 

  60. Boens, N., Janssens, L.D., and De Schryver, F.C. (1989) “Simultaneous analysis of single-photon timing data for the one- step determination of activation energies, frequency factors and quenching rate constants. Application to tryptophan photophysics”, Biophys. Chem. 33, 77–90.

    Article  CAS  Google Scholar 

  61. Miller, D.D. and Evans, D.F. (1989) “Fluorescence quenching in double-chained surfactants. 1. Theory of quenching in micelles and vesicles”, J. Phys. Chem. 93, 323–333.

    Article  CAS  Google Scholar 

  62. Lianos, P. and Modes, S. (1987) “Fractal modeling of luminescence quenching in microemulsions”, J. Phys. Chem. 91, 6088–6089.

    Article  CAS  Google Scholar 

  63. Duportail, G. and Lianos, P. (1988) “Fractal modeling of pyrene excimer quenching in phospholipid vesicles” Chem. Phys. Lett. 149, 73–78.

    Article  CAS  Google Scholar 

  64. Lianos, P. (1988) “Luminescence quenching in organized assemblies treated as media for noninteger dimensions”, J. Chem. Phys. 89, 5237–5241.

    Article  CAS  Google Scholar 

  65. Modes, S. and Lianos, P. (1989) “Luminescence probe study of the conditions affecting colloidal semiconductor growth in reversemicelles and water-in-oil microemulsions”, J. Phys. Chem. 93, 5854–5859.

    Article  CAS  Google Scholar 

  66. Johansson, L.-B.-O. and Söderman, O. (1987) “The cubic phase (I1) in the dodecyltrimethylammonium chloride/water systems. A fluorescence quenching study”, J. Phys. Chem. 91, 5275–5278.

    Article  CAS  Google Scholar 

  67. Fletcher, P.D.I. (1988) “Time-resolved fluorescence study of the structure and dynamics of the cubic I1 lyotropic mesophase of dodecyltrimethylammonium chloride”, Mol. Cryst. Liq. Cryst. 154, 323–333.

    Article  CAS  Google Scholar 

  68. Liang, P. and Thomas, J.K. (1988) “Photophysical studies in liquid crystal solutions and liquid crystal foams”, J. Colloid Interface Sci. 124, 358–364.

    Article  CAS  Google Scholar 

  69. Habti, A., Keravis, D., Levitz, P. and Van Damme, H. (1984) “Influence of surface heterogeneity on the luminescence decay of probe molecules in heterogeneous systems. Ru(bpy)<Stack><Subscript>3</Subscript><Superscript>2</Superscript></Stack> on clays”, J.Chem. Soc. Faraday Trans.2, 80, 63–67.

    Google Scholar 

  70. Levitz, P. and Van Damme, H. (1986) “Fluorescence decay study of the adsorption of nonionic surfactants at the solid-liquid interface. 2. Influence of polar chain length”, J. Phys. Chem. 90, 1302–1310.

    Article  CAS  Google Scholar 

  71. Chandar, P., Somasundaram, P. and Turro, N.J. (1987) “Fluorescence probe studies on the structure of the absorbed layer of dodecyl sulfate at the alumina-water interface”, J. Colloid Interface Sci. 117, 31–46.

    Article  CAS  Google Scholar 

  72. Thomas, J.K. (1987) “Characterization of surfaces by excited states”, J. Phys. Chem. 91, 267–276.

    Article  CAS  Google Scholar 

  73. Fletcher, P. and Gilbert, P. (1989) “Structure and dynamic properties of decylammonium chloride micelles in water and glycerol”, J. Chem. Soc., Faraday Trans. 1, 85, 147–156.

    Google Scholar 

  74. Lang, J., Zana, R. and Lalem, N. (1990) “Droplet size and dynamics in water-in-oil microemulsions. Correlations between results from time-resolved fluorescence quenching, quasielastic light scattering, electrical conductivity and water solubility measurements”, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, J. (1990). The Time-Resolved Fluorescence Quenching Method for the Study of Micellar Systems and Microemulsions : Principle and Limitations of the Method. In: Bloor, D.M., Wyn-Jones, E. (eds) The Structure, Dynamics and Equilibrium Properties of Colloidal Systems. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3746-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3746-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5666-3

  • Online ISBN: 978-94-011-3746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics