Skip to main content

Chemical structure and physico-chemical properties of agar

  • Conference paper
International Workshop on Gelidium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 68))

Abstract

Advances in the chemistry and physico-chemical properties of agar since the review of Araki at the Fifth International Seaweed Symposium in 1965 are discussed. These advances are essentially the result of better separation techniques of the heterogeneous family of polysaccharides known as agar, the use of nuclear magnetic resonance spectroscopy, the use of agarases and, particularly, the use of combinations of the three approaches. Although physico-chemical methods have evolved, particularly molecular-weight determinations, X-ray diffraction data and molecular modelling of agar, correlations between chemical and functional properties of agar and agarose and their gelation mechanisms remain to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, T., T. Araki & M. Kitamikado, 1990. Purification and characterization of a novel ß-agarase from Vibrio sp. AP-2. Eur. J. Biochem. 187: 461–465.

    Article  PubMed  CAS  Google Scholar 

  • Araki, C., 1937. Chemical studies of agar-agar. III. Acetylation of agar-like substance of Gelidium amansii. J. Chem. Soc. Japan 58: 1338–1350.

    CAS  Google Scholar 

  • Araki, C., 1966. Some recent studies on the polysaccharides of agarophytes. Proc. int. Seaweed Symp. 5: 3–17.

    Google Scholar 

  • Araki, C. & K. Arai, 1956). The chemical constitution of agar-agar. XVIII. Isolation of a new crystalline disaccharide by enzymatic hydrolysis of agar-agar. Bull. Chem. Soc. Japan 29: 339–345.

    Article  CAS  Google Scholar 

  • Araki, C. & K. Arai, 1957. The chemical constitution of agar-agar. XX. Isolation of a tetrasaccharide by enzymatic hydrolysis of agar-agar. Bull. Chem. Soc. Japan 30: 287–293.

    Article  CAS  Google Scholar 

  • Araki, C., K. Arai & S. Hirase, 1967. Studies on the chemical constitution of agar-agar. XXIII. Isolation of D-xylose, 6-O-methyl-D-galactose, 4-O-methyl-L-galactose and Omethylpentose. Bull. Chem. Soc. Japan 40: 959–962.

    Article  CAS  Google Scholar 

  • Arnott, S., A. Fulmer, W. E. Scott, I. C. M. Dea, R. Moorhouse & D. A. Rees, 1974. Agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Asare, O., 1980. Seasonal changes in sulphate and 3,6-anhydrogalactose content of phycocolloids from two red algae. Bot. Mar. 23: 595–598.

    CAS  Google Scholar 

  • Barbero, J. J., C. Bouffar-Roupe, C. Rochas & S. Perez, 1989. Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose. Int. J. Biol. Macromol. 11: 265–272.

    Article  Google Scholar 

  • Batey, J. F. & J. R. Turvey, 1975. The galactan sulfate of the red alga Polysiphonia lanosa. Carbohydr. Res. 43: 133–143.

    CAS  Google Scholar 

  • Bhattacharjee, S. S., W. Yaphe & G. K. Hamer, 1978. 13C N.m.r. spectroscopic analysis of agar, ic-carrageenan and i-carrageenan. Carbohydr. Res. 60: Cl-C3.

    Article  Google Scholar 

  • Bhattacharjee, S. S., W. Yaphe & G. K. Hamer, 1979. Study of agar and carrageenan by 13C nuclear magnetic resonance spectroscopy. Proc. int. Seaweed Symp. 9: 379–385.

    Google Scholar 

  • Bird, C. J., R. J. Helleur, E. R. Hayes & J. McLachlan, 1987. Analytical pyrolysis as a taxonomic tool in Gracilaria (Rhodophyta: Gigartinales). Proc. int. Seaweed Symp. 12: 207–212.

    Google Scholar 

  • Bird, K. T., 1988. Agar production and quality from Gracilaria sp. strain G-16: Effects of environmental factors. Bot. Mar. 31: 33–39.

    Google Scholar 

  • Bird, K. T., M. D. Hanisak & J. Ryther, 1981. Chemical quality and production of agars extracted from Gracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. Mar. 24: 441–444.

    CAS  Google Scholar 

  • Bowker, D. M. & J. R. Turvey, 1968. Water-soluble polysaccharides of the red alga Laurencia pinnatilda. Part I. Constituent units. J. Chem. Soc. C: 983–988.

    Google Scholar 

  • Brasch, D. J., C. T. Chuah & L. D. Melton, 1981. A 13C N.M.R. study on some agar-related polysaccharides from New-Zealand seaweeds. Austr. J. Chem. 34: 1095–1105.

    CAS  Google Scholar 

  • Chiles, T. C., K. T. Bird & F. E. Koehn, 1989. Influence of nitrogen availability on agar-polysaccharides from Gracilaria verrucosa strain G-16: structural analysis by NMR spectroscopy. J. Appl. Phycol. 1: 53–58.

    Article  CAS  Google Scholar 

  • Christiaen, D. & M. Bodard, 1983. Spectroscopie infrarouge de films d’agar de Gracilaria verrucosa (Huds.) Papenfuss. Bot. mar. 26: 425–427.

    Article  CAS  Google Scholar 

  • Christiaen, D., T. Stadler, M. Ondarza & M. C. Verdus, 1987. Structures and functions of the polysaccharides from the cell wall of Gracilaria verrucosa (Rhodophycae, Gigartinales). Proc. int. Seaweed Symp. 12: 139–146.

    Google Scholar 

  • Craigie, J. S. & A. Jurgens, 1989. Structure of agars from Gracilaria tikvahiae Rhodophyta: location of 4–0-methylL-galactose and sulfate. Carbohydr. Polymers 11: 265–278.

    CAS  Google Scholar 

  • Craigie, J. S. & Z. C. Wen, 1984. Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can. J. Bot. 62: 1665–1670.

    Article  CAS  Google Scholar 

  • Craigie, J. S., Z. C. Wen & J. P. van der Meer, 1984. Inter-specific, intraspecific and nutritionally-determined variations in the compositions of agars from Gracilaria spp. Bot. mar. 27: 55–61.

    Article  CAS  Google Scholar 

  • Djabourov, M., A. H. Clark, D. W. Rowlands & S. B. Ross-Murphy, 1989. Small-angle X-ray scattering characterization of agarose sols and gels. Macromolecules 22: 180–188.

    Article  CAS  Google Scholar 

  • Doty, M. & G. A. Santos, 1983. Agar from Gracilaria cylindrica. Aquatic Bot. 15: 299–306.

    Article  Google Scholar 

  • Duckworth, M., K. C. Hong & W. Yaphe, 1971. The agar polysaccharides of Gracilaria species. Carbohydr. Res. 18: 1–9.

    CAS  Google Scholar 

  • Duckworth, M. & J. R. Turvey, 1969a. An extracellular agarase from a Cytophaga species. Biochem. J. 113: 139–142.

    CAS  Google Scholar 

  • Duckworth, M. & J. R. Turvey, 1969b. The action of a bacterial agarase on agarose, porphyran and alkali-treated porphyran. Biochem. J. 113: 687–692.

    CAS  Google Scholar 

  • Duckworth, M. & W. Yaphe, 1971a. Preparation of agarose by fractionation from the spectrum of polysaccharides in agar. Anal. Chem. 44: 636–641.

    CAS  Google Scholar 

  • Duckworth, M. & W. Yaphe, 1971b. The structure of agar. Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189–197.

    CAS  Google Scholar 

  • Duckworth, M. & W. Yaphe, 1971c. The structure of agar. Part II. The use of a bacterial agarase to elucidate structural features of the charged polysaccharides in agar. Carbohydr. Res. 16: 435–445.

    CAS  Google Scholar 

  • Duraitnam, M. & N. Q. Santos, 1981. Agar from Gracilaria verrucosa (Hudson) Papenfuss and Gracilaria sjoestedtii Kylin from northeast Brazil. Proc. int. Seaweed Symp. 10: 669–674.

    Google Scholar 

  • Foord, S. A. & E. D. T. Atkins, 1989. New X-ray diffraction results from agarose: Extended single helix structure and implications for gelation mechanism. Biopolymers 28: 1345–1365.

    Article  CAS  Google Scholar 

  • Friedlander, M., Y. Lipkin & W. Yaphe, 1981. Composition of agars from Gracilaria cf. verrucosa and Pterocladia capillacea. Bot. Mar. 24: 595–598.

    CAS  Google Scholar 

  • Furneaux, R. H., I. J. Miller & T. T. Stevenson, 1990. Agaroids from New Zealand members of the Gracilariaceae. A novel dimethylated agar. Hydrobiologia 204/205: 454–654.

    Google Scholar 

  • Guerin, J. M. & K. T. Bird, 1987. Effects of aeration period on the productivity and agar quality of Gracilaria sp. Aquaculture 64: 105–110.

    Article  Google Scholar 

  • Groleau, D. & W. Yaphe, 1977. Enzymatic hydrolysis of agar: purification and characterization of ß-neoagarotetraose-hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672–679.

    CAS  Google Scholar 

  • Guiseley, K. B., 1970. The relationship between methoxy content and gelling temperature of agarose. Carbohydr. Res. 13: 247–256.

    CAS  Google Scholar 

  • Guiseley, K. B., 1987. Natural and synthetic derivatives of agarose and their use in biochemical separations. In M. Yalpani (ed.) Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications. Elsevier Science Publishers B.V., Amsterdam, 139–147.

    Google Scholar 

  • Hamer, G. K., S. S. Bhattacharjee & W. Yaphe, 1977. Analysis of the enzymatic hydrolysis products of agarose by 13C-n.m.r. spectroscopy. Carbohydr. Res. 54: C7–C10.

    CAS  Google Scholar 

  • Helleur, R. J., E. R. Hayes, J. S. Craigie & J. L. McLachlan, 1985a. Characterization of polysaccharides of red algae by pyrolysis-capillary gas chromatography. J. Anal. appl. Pyr. 8: 349–357.

    Article  CAS  Google Scholar 

  • Helleur, R. J., E. R. Hayes, W. D. Jamieson & J. S. Craigie, 1985b. Analysis of polysaccharide pyrolysate of red algae by capillarly gas chromatography-mass spectrometry. J. Anal. appl. Pyrolysis 8: 333–347.

    Article  CAS  Google Scholar 

  • Hirase, S., 1957. Studies on the chemical constitution of agar-agar. XIX. Pyruvic acid as a constituent of agar-agar (Part 3). Structure of the pyruvic acid-linking disaccharide derivative isolated from methanolysis products of agar. Bull. Chem. Soc. Japan 30: 75–79.

    Article  CAS  Google Scholar 

  • Hirase, S. & C. Araki, 1961. Isolation of 6-O-methyl-Dgalactose from the agar of Ceramium boydenii. Bull. Chem. Soc. Japan 34: 1048.

    Article  CAS  Google Scholar 

  • Hirase, S. & K. Watanabe, 1971. Fractionation and structural investigation of funoran. Proc. int. Seaweed Symp. 7: 451–454.

    Google Scholar 

  • Hong, K. C., M. E. Goldstein & W. Yaphe, 1969. A chemical and enzymic analysis of the polysaccharides from Gracilaria. Proc. int. Seaweed Symp. 6: 473–482.

    Google Scholar 

  • Hoyle, M., 1978a. Agar studies in two Gracilaria species (G. bursapastoris (Gmelin) Silva and G. coronopifolia. Ag.) from Hawaii. I. Yield and gel strength in the gametophyte and tetrasporophyte generations. Bot. mar. 21: 343–345.

    Google Scholar 

  • Hoyle, M., 1978b. Agar studies in two Gracilaria species (G. bursapastoris (Gmelin) Silva and G. coronopifolia. Ag.) from Hawaii. II. Seasonal Aspects. Bot. mar. 21: 347–352.

    Google Scholar 

  • Izumi, K., 1970. A new method for fractionation of agar. Agr. Biol. Chem. 34: 1739–1740.

    Article  CAS  Google Scholar 

  • Izumi, K., 1971. Chemical heterogeneity of the agar from Gelidium amansii. Carbohydr. Res. 17: 227–230.

    CAS  Google Scholar 

  • Izumi, K., 1972. Chemical heterogeneity of the agar from Gracilaria verrucosa. J. Biochem. 72: 135–140.

    PubMed  CAS  Google Scholar 

  • Izumi, K., 1973. Structural analysis of agar-type polysaccharides by NMR spectroscopy. Biochim. Biophys. Acta 320: 311–317.

    CAS  Google Scholar 

  • Ji, M., M. Lahaye & W. Yaphe, 1985. Structure of agar from Gracilaria spp. (Rhodophyta) collected in People’s Republic of China. Bot. mar. 28: 521–528.

    CAS  Google Scholar 

  • Ji, M., M. Lahaye & W. Yaphe, 1988. Structural studies on agar fractions extracted sequentially from Chinese red seaweeds: Gracilaria sjeostedtii, G. textorii and G. salicornia using 13C-NMR and IR spectroscopy. Chin. J. Oceanol. Limnol. 6: 87–103.

    Article  CAS  Google Scholar 

  • John, D. M. & S. O. Asare, 1975. A preliminary study of the variations in yield and properties of phycocolloids from Ghanaian seaweeds. Mar. Biol. 30: 325–330.

    Google Scholar 

  • Karamanos, Y., M. Ondarza, F. Bellanger, D. Christiaen & S. Moreau, 1989. The linkage of 4-O-methyl-L-galactopyranose in the agar polymers from Gracilaria verrucosa. Carbohydr. Res. 187: 93–101.

    CAS  Google Scholar 

  • Kim, D. H. & N. P. Henriquez, 1978. Yields and gel strengths of agar from cystocarpic and tetrasporic plants of Gracilaria verrucosa (Florideophyceae). Proc. int. Seaweed Symp. 9: 257–262.

    Google Scholar 

  • Kim, C. S. & H. J. Humm, 1965. The red alga, Gracilaria folifera with special reference to the cell wall polysaccharides. Bull. Mar. Sci. 15: 1036–1050.

    CAS  Google Scholar 

  • Lahaye, M., 1986. Agar from Gracilaria spp. PhD Thesis, McGill University, Montréal, Québec, Canada: pp 330.

    Google Scholar 

  • Lahaye, M., J. F. Revol, C. Rochas, J. McLachlan & W. Yaphe, 1988. The chemical structure of Gracilaria crassissima (P. & H. Crouan in Schramm & Mazé) P. & H. Crouan in Schramm & Mazé and G. tikvahiae McLachlan (Gigartinales, Rhodophyta) cell-wall polysaccharides. Bot. mar. 31: 491–501.

    Article  CAS  Google Scholar 

  • Lahaye, M., C. Rochans & W. Yaphe, 1986. A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64: 579–585.

    Article  CAS  Google Scholar 

  • Lahaye, M. & W. Yaphe, 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 8: 285–301.

    CAS  Google Scholar 

  • Lahaye, M. & W. Yaphe, 1989. The chemical structure of agar from Gracilaria compressa (C. Agardh) Greville, G. cervicornis (Turner) J. Agardh, G. damaecornis J. Agardh and G. domingensis Sonder ex Kützing (Gigartinales, Rhodophyta). Bot. Mar. 32: 369–377.

    CAS  Google Scholar 

  • Lahaye, M., W. Yaphe, M. T. Phan Viet & C. Rochas, 1989. 13C-N.M.R. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr. Res. 190: 249–265.

    Article  CAS  Google Scholar 

  • Lahaye, M., W. Yaphe & C. Rochas, 1985. 13C-N.m.r. spectral analysis of sulfated and desulfated polysaccharides of the agar type. Carbohydr. Res. 143: 240–245.

    Article  CAS  Google Scholar 

  • Lignell, A. & M. Pedersén, 1989. Agar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot. Mar. 32: 219–227.

    CAS  Google Scholar 

  • Matsuhashi, T. & K. Hayashi, 1971. Rheological behavior of agar gels processed from Gracilaria foliifera of Florida. Proc. Int. Seaweed Symp. 7: 464–468.

    Google Scholar 

  • Matsuhiro, B. & C. C. Urzfia, 1991. Agars from Chilean Gelidiaceae. Hydrobiologia 221: 149–156.

    Article  CAS  Google Scholar 

  • McCandless, E. L., 1981. Polysaccharides of the Seaweeds. In Lobban, C. S. & M. J. Wynne (eds.) The Biology of Seaweeds. Blackwell Scientific Publications: pp. 559–588.

    Google Scholar 

  • Meer, W., 1980. XXXIn Davidson, R. S. (ed.) Handbook of Water Soluble Gums and Resins. McGraw Hill, 7: 17–19.

    Google Scholar 

  • Miller, I. J., H. Wong & R. H. Newman, 1982. A carbon-13 NMR study of some disaccharides from algal polysaccharides. Austr. J. Chem. 35: 853–856.

    CAS  Google Scholar 

  • Morice, L. M., M. W. McLean, F. B. Williamson & W. F. Long, 1983a. ß-agarase I and II from Pseudomonas atlantica. Purifications and some properties. Eur. J. Biochem. 135: 553–558.

    Article  Google Scholar 

  • Morrice, L. M., M. W. McLean, W. F. Long & F. B. Williamson, 1983b. Prophyran primary structure. An investigation using ß-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. Eur. J. Biochem. 133: 673–684.

    Article  CAS  Google Scholar 

  • Nelson, S. G., S. S. Yang, C. Y. Yang & Y. M. Chiang, 1983. Yield and quality of agar from species of Gracilaria (Rhodophyta) collected from Taiwan and Micronesia. Bot. mar. 26: 361–366.

    Article  CAS  Google Scholar 

  • Nicolaissen, F. M., I. Meyland & K. Schaumburg, 1980. 13C NMR spectra at 67.9 MHz of agarose solutions and partly 6-O-methylated agarose at 95 °C. Acta Chem. Scand. Ser. B 34: 103–107.

    Article  Google Scholar 

  • Ondarza, M., Y. Karamanos, D. Christiaen & T. Stadler, 1987. Variations in the composition of agar polysaccharides from Gracilaria verrucosa, cultivated under controlled conditions. Food Hydrocolloids 5/6: 507–509.

    Article  Google Scholar 

  • Onraët, A. C. & B. L. Robertson, 1987. Seasonal variation in yield and properties of agar from sporophytic and gametophytic phases of Onikusa pristoides (Turner) Akatsuka (Gelidiaceae, Rhodophyta). Bot. mar. 30: 491–495.

    Article  Google Scholar 

  • Oza, R. M., 1978. Studies on Indian Gracilaria. IV. Seasonal variation in agar and gel strength of Gracilaria corticata J. Ag. occurring on the coats of Veraval. Bot. mar. 21: 165–167.

    Google Scholar 

  • Patwary, M. U. & J. P. van der Meer, 1983. Genetics of Gracilaria tikvahiae (Rhodophyceae) IX: Some properties of agars extracted from morphological mutants. Bot. mar. 26: 295–299.

    Article  CAS  Google Scholar 

  • Peat, S., J. R. Turvey & D. A. Rees, 1961. Carbohydrate of the red alga, Porphyra umbillicalis. J. Chem. Soc.: 1590–1595.

    Google Scholar 

  • Rees, D. A., 1961a. Enzymatic synthesis of the 3,6-anhydroL-galactose with porphyran from L-galactose 6-sulphate units. Biochem. J. 81: 347–352.

    CAS  Google Scholar 

  • Rees, D. A., 196lb. Estimation of the relative amounts of isomeric sulphate esters in some sulphated polysaccharides. J. Chem. Soc.: 5168–6171.

    Google Scholar 

  • Rees, D. A., 1969. Structural, conformation and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohydr. Chem. Biochem. 24: 267–332.

    CAS  Google Scholar 

  • Rees, D. A. & E. Conway, 1962. The structure and biosynthesis of porphyran: a comparison of some samples. Biochem. J. 84: 411–416.

    PubMed  CAS  Google Scholar 

  • Rees, D. A. & E. J. Welsh, 1977. Secondary and tertiary structure of polysaccharides in solution and gels. Angew. Chem. Int. Ed. Eng. 16: 214–224.

    Article  Google Scholar 

  • Rochas, C. & M. Lahaye, 1989a. Average molecular weight and molecular weight distribution of agarose and agarosetype polysaccharides. Carbohydr. Polymers 10: 289–298.

    Article  CAS  Google Scholar 

  • Rochas, C. & M. Lahaye, 1989b. Solid state 13C-NMR spectroscopy of red seaweeds, agars and carrageenans. Carbohydr. Polymers 10: 189–204.

    Article  CAS  Google Scholar 

  • Rochas, C., M. Lahaye & W. Yaphe, 1986a. Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot. mar. 29: 335–340.

    Article  CAS  Google Scholar 

  • Rochas, C., M. Lahaye, W. Yaphe & M. T. Phan Viet, 1986b. 13C NMR-spectroscopic investigation of agarose oligomers. Carbohydr. Res. 148: 199–207.

    Article  CAS  Google Scholar 

  • Rochas, C., M. Rinaudo & S. Landry, 1990. Role of molecular weight on the mechanical properties of kappa-carrageenans gels. Carbohydr. Polymers 12: 255–266.

    CAS  Google Scholar 

  • Samec, M. von, & V. Isajevic, 1922. Studien uber pipanzen kolloide. XIV. Physico-chemische analyse der agargallerte. Kolloidchem. Beih. 16: 285–300.

    Article  CAS  Google Scholar 

  • Shashkov, A. S., A. I. Usov & S. V. Yarotskii, 1978. Polysaccharides of algae. XXIV. The application of 13C NMR spectroscopy to the analysis of the structure of polysaccharides of the agar group. Bioorg. Khim. 4: 74–81 (in Russian).

    CAS  Google Scholar 

  • Sheng, S. Y., Z. Y. Xia, L. Z. En & L. W. Qing, 1984. The yield and properties of agar extracted from different life stages of Gracilaria verrucosa. Proc. int. Seaweed Symp. 11: 551–553.

    Google Scholar 

  • Smidsrod, O., 1974. Molecular basis for some physical properties of alginates in the gel state. Faraday Dis. Chem. Soc. 57: 263–274.

    Google Scholar 

  • Stevenson, T. T. & R. H. Furneaux, 1991. Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr. Res. (in press).

    Google Scholar 

  • Turvey, J. R. & J. Christison, 1967a. The hydrolysis of algal galactans by enzymes from a Cytophaga species. Biochem. J. 105: 311–316.

    CAS  Google Scholar 

  • Turvey, J. R. & J. Christison, 1967b. The enzymic degradation of porphyran. Biochem. J. 105: 317–321.

    CAS  Google Scholar 

  • Turvey, J. R. & E. L. Williams, 1976. The agar-type polysaccharide from the red alga Ceramium rubrum. Carbohydr. Res. 49: 419–425.

    CAS  Google Scholar 

  • Usov, A. I., 1984. NMR spectroscopy of red seaweed polysaccharides: Agars, carrageenans, and xylans. Bot. mar. 27: 189–202.

    Article  CAS  Google Scholar 

  • Usov, A. I. & E. G. Ivanova, 1981. Polysaccharides of algae. XXXI: Enzymatic cleavage of an agar-like polysaccharide from the red alga Rhodomela larix (Turn.) C. Ag. Bioorg. Khim. 7: 1060–1068 (in Russian).

    CAS  Google Scholar 

  • Usov, A. I. & E. G. Ivanova, 1987. Polysaccharides of algae. XXXVII. Characterization of hybrid structure of substituted agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) using ß-agarase and 13C-NMR spectroscopy. Bot. mar. 30: 365–370.

    Article  CAS  Google Scholar 

  • Usov, A. I., E. G. Ivanova & V. F. Makienko, 1989. Polysaccharides of algae. XXIX: Comparison of samples of agar from different generations of Gracilaria verrucosa (Huds.) Papenf. Bioorg. Khim. 5: 1647–1653 (in Russian).

    Google Scholar 

  • Usov, A. I., E. G. Ivanova & A. S. Shashkov, 1983. Polysaccharides of algae. XXXIII: Isolation and 13C NMR spectral study of some new gel-forming polysaccharides from Japan Sea red seaweeds. Bot. mar. 26: 285–294.

    Article  CAS  Google Scholar 

  • Usov, A. I., L. I. Miroshnikova, 1975. Isolation of agarase from Littorina mandshurica by affinity chromatography on Biogel A. Carbohydr. Res. 43: 204–207.

    CAS  Google Scholar 

  • Usov, A. I., S. V. Yarotsky & A. S. Shashkov, 1980. 13C NMR spectroscopy of red algal galactans. Biopolymers 19: 977–990.

    Article  CAS  Google Scholar 

  • Watase, M. & K. Nishinari, 1981a. Effect of alkali metal ions on the rheological properties of x-carrageenan and aga-rose gels. J. Text. Stud. 12: 427–445.

    Article  CAS  Google Scholar 

  • Watase, M. & K. Nishinari, 1981b. Effect of sodium hydroxide pretreatment on the relaxation spectrum of concentrated agar-agar gels. Rheol. Acta 20: 155–162.

    CAS  Google Scholar 

  • Watase, M. & K. Nishinari, 1982. Effect of alkali metal ions on the viscoelasticity of concentrated kappa-carrageenan and agarose gels. Rheol. Acta 21: 318–324.

    CAS  Google Scholar 

  • Welti, D., 1977. The 300 MHz proton magnetic resonance spectra of methyl ß-D-galactopyranoside, methyl 3,6anhydro-a-D-galactopyranoside, agarose, x-carrageenan, and segments of i-carrageenan and agarose sulphate. J. Chem. Res. (S): 312–313, (M): 3566–3587.

    Google Scholar 

  • Wen, Z. C. & J. S. Craigie, 1984. Composition and properties of agar-type polysaccharides from Gracilaria sjoestedtii Kylin. Chin. J. Oceanol. Limnol. 2: 88–91.

    Article  CAS  Google Scholar 

  • Whyte, J. N. C. & J. R. Englar, 1981. The agar component of the red seaweed Gelidium purpurascens. Phytochem. 20: 237–240.

    Article  CAS  Google Scholar 

  • Whyte, J. N. C., J. R. Englar, R. G. Saunders & J. C. Lindsay, 1981. Seasonal variations in the biomass, quantity and quality of agar from the reproductive and vegetative stages of Gracilaria (verrucossa type). Bot. mar. 24: 493–501.

    Article  Google Scholar 

  • Whyte, J. N. C., S. P. C. Hosford & J. R. Englar, 1985. Assignment of agar or carrageenan structures to red algal polysaccharides. Carbohydr. Res. 140: 336–341.

    CAS  Google Scholar 

  • Yanagawa, T., 1946. Kanten (Agar), 2nd edn (in Japanese), Sangiotosho Co. LTD Tokyo., Japan: 352 pp.

    Google Scholar 

  • Yang, S. S., C. H. Yang & H. H. Wang, 1981. Seasonal variation of agar-agar produced in Taiwan area. Proc. int. Seaweed Symp. 10: 737–742.

    Google Scholar 

  • Yaphe, W., 1957. The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3: 987–993.

    CAS  Google Scholar 

  • Young, K. S., S. S. Battacharjee & W. Yaphe, 1978. Enzymic cleavage of the a-linkages in agarose to yield agarooligosaccharides. Carbohydr. Res. 66: 207–212.

    CAS  Google Scholar 

  • Young, K. S., M. Duckworth & W. Yaphe, 1971. The structure of agar. Part III. Pyruvic acid, a common feature of agars from different agarophytes. Carbohydr. Res. 16: 446–448.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. A. Juanes B. Santelices J. L. McLachlan

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lahaye, M., Rochas, C. (1991). Chemical structure and physico-chemical properties of agar. In: Juanes, J.A., Santelices, B., McLachlan, J.L. (eds) International Workshop on Gelidium . Developments in Hydrobiology, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3610-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3610-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5601-4

  • Online ISBN: 978-94-011-3610-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics