Skip to main content

Bacterial Heavy Metal Resistance Systems and Possibility of Bioremediation

  • Chapter
Biotechnology: Bridging Research and Applications

Abstract

Bioremediation of heavy metal wastes by either bioaccumulation or by enzymatic detoxification has not as yet been put to practical use. The potential for the former has been demonstrated by a couple of biotechnology start-up companies (Brierley, et al., 1986, Brierley, et al., 1989; Darnall, 1989; Darnall, et al., 1989). For enzymatic detoxification, mercury-contaminated sludge has effectively been decontaminated at a laboratory scale (Hansen, et al., 1984; Hansen, personal communication). Here in a Symposium on Applied Biotechnology (in particular as related to problems faced by the military), I will describe the potential for these two quite different methods for bioremediation of toxic mineral wastes: firstly bioaccumulation, for which there is an applied microbiology literature but less basic science and theoretical understanding, and then the redox conversion of toxic heavy metals, for which bioremediation might be accomplished by oxidation or reduction from a more toxic form to a less toxic (or readily removed from the environment) form. These three bioconversions are reduction of Hg(II) and Hg(I) ions to metallic Hg(0), the oxidation of more toxic arsenite [As(III)] to arsenate[As(V)]; and the reduction of more toxic chromate [Cr(VI)] to less toxic and more readily removed chromium ions [Cr(III)]. Laboratory understanding of the redox processes is better developed than more applied or field development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking, H., Govers, H. and van’t Riet, J. 1985. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl. Environ. Microbiol. 50: 1262–1267.

    PubMed  CAS  Google Scholar 

  • Begley, T.P., Walts, A.E. and Walsh, C.T. 1986a. Bacterial organomercurial lyase: Overproduction, isolation and characterization. Biochem. 25: 7186–7192.

    Article  CAS  Google Scholar 

  • Begley, T.P., Walts, A.E. and Walsh, C.T. 1986b. Mechanistic studies of a protonolytic organomercurial cleaving enzyme: Bacterial organomercurial lyase. Biochem. 25: 7192–7200.

    Article  CAS  Google Scholar 

  • Belliveau, B.H. and Trevors, J.T. 1989. Mercury resistance and detoxification in bacteria. Appl. Organometallic Chem. 3: 283–294.

    Article  CAS  Google Scholar 

  • Beveridge, T.J. 1989. Interactions of metal ions with components of bacterial cell walls and their biomineralization. In: Metal-Microbe Interactions. Poole, R.K. and Gadd, G.M., eds. IRL Press, Oxford, pp. 65–83.

    Google Scholar 

  • Bopp, L.H. 1984. Microbial removal of chromate from contaminated waste water. U.S. Patent # 4,468,461, issued August 28,1984.

    Google Scholar 

  • Bopp, L.H., Chakrabarty, A.M. and Ehrlich, H.L. 1983. Chromate resistance plasmid in Pseudomonas fluorescens. J. Bacteriol. 155: 1105–1109.

    PubMed  CAS  Google Scholar 

  • Bopp, L.H. and Ehrlich, H.L. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431.

    Article  CAS  Google Scholar 

  • Brierley, C.L., Brierley, J.A. and Davidson, M.S. 1989. Applied microbial processes for metals recovery and removal from waste water. In: Metal Ions and Bacteria. Beveridge, T.J. and Doyle, R.J., eds. John Wiley & Sons, N.Y. pp. 359–382.

    Google Scholar 

  • Brierley, J.A., Brierley, C.L. and Goyak, G.M. 1986. AMT- BIOCLAIM: A new waste water treatment and metal recovery technology. In: Fundamental and Applied Biohydrometallurgy. Lawrence, R.W., Branion, R.M.R. and Ebner, H.G., eds. Elsevier, Amsterdam, pp. 291–304.

    Google Scholar 

  • Brown, N.L. 1985. Bacterial resistance to mercury: Reductio ad absurdum. Trends Biochem. Sci. 10: 400–403.

    Article  CAS  Google Scholar 

  • Brown, N.L., Misra, T.K., Winnie, J.N., Schmidt, A., Seiff, M. and Silver, S. 1986. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: Further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Molec. Gen. Genet. 202: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Cervantes, C., Ohtake, H., Chu, L., Misra, T.K. and Silver, S. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.

    PubMed  CAS  Google Scholar 

  • Cervantes, C. and Silver, S. 1990. Inorganic cation and anion transport systems of Pseudomonas. In: Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology. Silver, S., Chakrabarty, A.M., Iglewski, B. and Kaplan, S. eds. American Society for Microbiology, Washington, D.C. pp. 359–372.

    Google Scholar 

  • Chen, C.-M., Misra, T.K., Silver, S. and Rosen, B.P. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030–15038.

    PubMed  CAS  Google Scholar 

  • Darnall, D.W. 1989. Removal and recovery of heavy metal ions from waste waters using a new bioabsorbant: AlgaSORB. In: Innovative Hazardous Waste Treatment Technology. Freeman, H., ed. Technomic Publishing Company, Lancaster, PA. In press.

    Google Scholar 

  • Darnall, D.W., Gabel, A.M. and Gardea-Torresday, J. 1989. AlgaSORB: A new biotechnology for removing and recovering heavy metal ions from ground water and industrial waste water. In: Hazardous Waste Treatment: Biosystems for Pollution Control, Proceedings of the 1989 A & WMA/EPA International Symposium. EPA, Cincinnati, Ohio. pp. 113–124.

    Google Scholar 

  • Distefano, M.D., Au, K.G. and Walsh, C.T. 1989. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry. Biochem. 28: 1168–1183.

    Article  CAS  Google Scholar 

  • Distefano, M.D., Moore, M.J. and Walsh, C.T. 1990. Active site of mercuric reductase resides at the subunit interface and requires Cysl35 and Cysl40 from one subunit and Cys558 and Cys559 from the adjacent subunit: Evidence from in vivo and in vitro heterodimer formation. Biochem. 29: 2703–2713.

    Article  CAS  Google Scholar 

  • Erardi, F.X., Failla, M.L. and Falkinham III, J.O. 1987. Plasmid- encoded copper resistance and precipitation by Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 53: 1951–1954.

    PubMed  CAS  Google Scholar 

  • Foster, T.J. and Brown, N.L. 1985. Identification of the merR gene of R100 by using mer-lac gene and operon fusions. J. Bacteriol. 163: 1153–1157.

    PubMed  CAS  Google Scholar 

  • Foster, T.J., Nakahara, H., Weiss, A.A. and Silver, S. 1979. Transposon A-generated mutations in the mercuric resistance genes of plasmid R100-1. J. Bacteriol. 140: 167–181.

    PubMed  CAS  Google Scholar 

  • Frantz, B. and O’Halloran, T.V. 1990. DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochem. 29: 4747–4751.

    Article  CAS  Google Scholar 

  • Gadd, G.M. and White, C. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Metal-Microbe Interactions. Poole, R.K. and Gadd, G.M., eds. IRL Press, Oxford, pp. 19–38.

    Google Scholar 

  • Greene, B. and Darnall, D.W. 1989. Microbial oxygenic photoautotrophs (cyanobacteria and algae) for metal ion binding. In: Microbial Mineral Recovery. Ehrlich, H. ed. McGraw Hill, N.Y.

    Google Scholar 

  • Greene, B., Hosea, M., McPherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W., 1986. The interaction of gold(I) and gold(III) with algal biomass. Envir. Sci. Technol. 20: 627–632.

    Article  CAS  Google Scholar 

  • Griffin, H., Foster, T.J., Silver, S. and Misra, T.K. 1987. Cloning and DNA sequence analysis of the mercuric and organomercurial resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci. 84: 3112–3116.

    Article  PubMed  CAS  Google Scholar 

  • Gvozdyak, P.I., Mogilevich, N.F., Ryl’skii, A.F. and Grishchenko, N.I. 1986. Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965.

    CAS  Google Scholar 

  • Hansen, C.L., Zwolinski, G., Martin, D. and Williams, J.W. 1984. Bacterial removal of mercury from sewage. Biotech. Bioengin. 26: 1330–1333.

    Article  CAS  Google Scholar 

  • Helmann, J.D., Ballard, B.T. and Walsh, C.T. 1990. The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247: 946–948.

    Article  PubMed  CAS  Google Scholar 

  • Helmann, J.D. and Walsh, C.T. 1990. Metal dependent transcriptional activation: Binding of metal ions by the Bacillus species RC607 MerR protein. Biochem., In press.

    Google Scholar 

  • Higham, D.P., Sadler, P.J. and Scawen, M.D. 1984. Cadmium resistant Pseudomonas putida synthesizes novel cadmium proteins. Science 225: 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Higham, D.P., Sadler, P.J. and Scawen, M.D. 1985. Cadmium resistance in Pseudomonas putida: Growth and uptake of cadmium. J. Gen. Microbiol. 131: 2539–2544.

    CAS  Google Scholar 

  • Higham, D.P., Sadler, P.J. and Scawen, M.D. 1986a. Effect of cadmium on the morphology, membrane integrity and permeability of in Pseudomonas putida. J. Gen. Microbiol. 132: 1475–1482.

    CAS  Google Scholar 

  • Higham, D.P., Sadler, P.J. and Scawen, M.D.. 1986b. Cadmium binding proteins in Pseudomonas putida: Pseudothioneins. Environ. Health Perspect. 65: 5–11.

    PubMed  CAS  Google Scholar 

  • Horitsu, H. and Kato, H. 1980. Comparisons of characteristics of cadmium-tolerant and bacterium Pseudomonas aeruginosa G-l and its cadmium-sensitive mutant strain. Agric. Biol. Chem. 44: 777–782.

    Article  CAS  Google Scholar 

  • Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S. and Kawai, K. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-l. Agric. Biol. Chem. 51: 2417–2420.

    Article  CAS  Google Scholar 

  • Hsu, C.M. and Rosen, B.P. 1989. Characterization of the catalytic subunit of an anion pump. J. Biol. Chem. 264: 17349–17354.

    PubMed  CAS  Google Scholar 

  • Hutchins, S.R., Davidson, M.S., Brierley, J.A. and Brierley, C.L. 1986. Microorganisms in reclamation of metals. Ann. Rev. Microbiol. 40: 311–336.

    Article  CAS  Google Scholar 

  • Ishibashi, Y., Cervantes, C. and Silver, S. 1990. Chromium reduction by Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270.

    PubMed  CAS  Google Scholar 

  • Karkaria, C.E. and Rosen, B.P. 1990. Mutagenesis of a nucleotide binding site of an anion-translocating ATPase. J. Biol. Chem. 265: 7832–7836.

    PubMed  CAS  Google Scholar 

  • Karplus, A. and Schulz, G.E. 1987. Refined structure of glutathione reductase at 1.54 Ã… resolution. J. Mol. Biol. 195: 701–729.

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli, M.B. and R.S. Mitra. 1981. Cadmium-binding component in Escherichia coli during accommodation to low levels of this ion. Appl. Environ. Microbiol. 41: 46–50.

    PubMed  CAS  Google Scholar 

  • Komori, K., Wang, P-C., Toda, K. and Ohtake, H. 1989. Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 31: 567–570.

    Article  CAS  Google Scholar 

  • Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990a. Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioengin. 35: 951–954.

    Article  CAS  Google Scholar 

  • Komori, K., Toda, K. and Ohtake, H. 1990b. Effects of oxygen stress on chromate reduction in Enterobacter cloacae. J. Ferment. Bioeng. 69: 67–69.

    Article  CAS  Google Scholar 

  • Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990c. A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl. Microbiol. Biotechnol. 33: 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Kvasnikov, E.I., Stepanyuk, V.V., Klyushnikova, T.M., Serpokrylov, N.S., Simonova, G.A., Kasatkina, T.P. and Pachenko, L.P. 1985. A new chromium-reducing, gram-variable bacterium with mixed type flagellation. Mikrobiologiya 54: 83–88.

    CAS  Google Scholar 

  • Laddaga, R., Chu, L., Misra, T.K. and Silver, S. 1987. Nucleotide sequence and expression of the mercurial resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. 84: 5106–5110.

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva, E.V. and Lyalikova, N.N. 1979. Reduction of crocoite by Pseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522.

    CAS  Google Scholar 

  • Lund, P.A. and Brown, N.L. 1989. Regulation of transcription from the mer and merR promoters of the transposon Tn501. J. Mol. Biol. 205: 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Macaskie, L.E. and Dean, A.C.R. 1989. Microbial metabolism, desolubilization, and deposition of heavy metals: Metal uptake by immobilized cells and application to the detoxification of liquid wastes. Advances in Biotechnological Processes 12: 159–201.

    PubMed  CAS  Google Scholar 

  • Macaskie, L.E., Dean, A.C.R., Cheetham, A.K., Jakeman, R.J.B, and Skarnulis, A.J. 1987. Cadmium accumulated by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location in the bacterial cell. J. Gen. Microbiol. 133: 539–544.

    CAS  Google Scholar 

  • Meissner, P.S. and Falkinham III, J.O. 1984. Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 157: 669–672.

    CAS  Google Scholar 

  • Miller, S.M., Moore, M.J., Massey, V., Williams, C.H. Jr., Distefano, M.D., Ballou, D.P. and Walsh, C.T. 1989. Evidence for participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry 28: 1194–1205.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, R.S., Gray, R.H., Chin, B. and Bernstein, I.A. 1975. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of cadmium. J. Bacteriol. 121: 1180–1188.

    PubMed  CAS  Google Scholar 

  • Mobley, H.L.T. and Rosen, B.P. 1982. Energetics of plasmid- mediated arsenate resistance in Escherichia coli. Proc. Natl. Acad. Sci. 79: 6119–6122.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M.J., and Walsh, C.T. 1989. Mutagenesis of the N- and C- terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials. Biochemistry 28: 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M.J., Distefano, M.D., Walsh, C.T., Schliering, N. and Pai, E.F. 1989. Purification, crystallization, and preliminary x-ray diffraction studies of the flavoprotein mercuric ion reductase from Bacillus sp. strain RC607. J. Biol. Chem. 264: 14386–14388.

    PubMed  CAS  Google Scholar 

  • Nakahara, H., Silver, S., Miki, T. and Rownd, R.H. 1979. Hypersensitivity to Hg2+ and hyperbirrding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140: 161–166.

    PubMed  CAS  Google Scholar 

  • Nies, A., Nies, D.H. and S. Silver. 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171: 5065–5070.

    PubMed  CAS  Google Scholar 

  • Nies, A., Nies, D.H. and S. Silver. 1990. Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.

    PubMed  CAS  Google Scholar 

  • Nucifora, G., Chu, L., Silver, S. and Misra, T.K. 1989a. Mercury Operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol. 171: 4241–4247.

    PubMed  CAS  Google Scholar 

  • Nucifora, G., Silver, S. and Misra, T.K. 1989b. Down regulation of mer operon function by the product of the merD gene of plasmid pDU1358. Molec. Gen. Genet. 220: 69–72.

    PubMed  CAS  Google Scholar 

  • O’Halloran, T. V. 1989. Metalloregulatory proteins: metal responsive molecular switches governing gene expression. In: Metal Ions in Biological Systems. Sigel, H., ed. Marcel Dekker, New York. Vol. 25, pp. 105–145.

    Google Scholar 

  • O’Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M. and Wright, J.G. 1989. The merR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129.

    Article  PubMed  Google Scholar 

  • Ohtake, H., Cervantes, C. and Silver, S. 1987. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169: 3853-3856.

    PubMed  CAS  Google Scholar 

  • Ohtake, H., Komori, K., Cervantes, C. and Toda, K. 1989. Chromate resistance in a chromate-reducing strain of Enterobacter cloacae. FEMS Microbiol. Let. 67: 85–88.

    Article  Google Scholar 

  • Ohtake, H., Fujii, E. and Toda, K. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ. Technol. Lett. 11: 663–668.

    Article  CAS  Google Scholar 

  • Olafson, R.W. 1984. Prokaryotic metallothionein. Internat. J. Peptide Protein Res. 24: 303–308.

    Article  CAS  Google Scholar 

  • Olafson, R.W., Abel, K. and Sim, R.G. 1979. Prokaryotic metallothionein: Preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem. Biophys. Res. Commun. 89: 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Olafson, R.W., Loya, S. and Sim, R.G. 1980. Physiological parameters of prokaryotic metallothionein induction. Biochem. Biophys. Res. Commun. 95: 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  • Olafson, R.W., McCubbin, W.D. and C.M. Kay. 1988. Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem. J. 251: 691–699.

    PubMed  CAS  Google Scholar 

  • Osborne, F.H. and Ehrlich, H.L. 1976. Oxidation of arsenite by a soil isolate of Alcaligenes. J. Appl. Bacteriol. 41: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Owolabi, J.B. and Rosen, B.P. 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J. Bacteriol. 172: 2367–2371.

    PubMed  CAS  Google Scholar 

  • Parkhill, J. and Brown, N.L. 1990. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501: the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 18: 5157–5162.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, S.E. and Taylor, M.L. 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Environ. Microbiol. 32: 392–399.

    CAS  Google Scholar 

  • Ralston, R.M. and O’Halloran, T.V. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. 87: 3846–3850.

    Article  PubMed  CAS  Google Scholar 

  • Romanenco, V.I. and Kkoren’kov, V.N. 1977. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417.

    Google Scholar 

  • Rosen, B.P., Weigel, U., Karkaria, C. and Gangola, P. 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070.

    PubMed  CAS  Google Scholar 

  • Rosenstein, R. and Götz, F. 1990. Nucleotide sequence and expression of arsenic resistance genes of Staphylococcus xylosus. Unpublished manuscript in preparation.

    Google Scholar 

  • Sahlman, L., Lameir, A.-M., Lindskog, S. and Dunford, H.B. 1984. The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. J. Biol. Chem. 259: 12403–12408.

    PubMed  CAS  Google Scholar 

  • Sahlman, L., Lamieir, A.-M. and Lindskog, S. 1986. Rapid-scan stopped-flow studies of the Ph dependence of the reaction between mercuric reductase and NADPH. Eur. J. Biochem. 156: 479–488.

    Article  PubMed  CAS  Google Scholar 

  • San Francisco, M.J.D., Tisa, L.S. and Rosen, B.P. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of plasmid R773. Molec. Microbiol. 3: 15–21.

    Article  CAS  Google Scholar 

  • San Francisco, M.J.D., Hope, C.L., Owolabi, J.B., Tisa, L.S. and Rosen, B.P. 1990. Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 18: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, K. and Matsushima, K. 1983. Isolation of potassium chromate-resistant bacterium and reduction of hexavalent chromium by the bacterium. Bull. Faculty Agriculture Mie Univ. 67: 101–106.

    Google Scholar 

  • Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. and Rosenberg, H. 1981. Inducible plasmid-determined resistance to arsenate, arsenite and antimony (III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146: 983–996.

    PubMed  CAS  Google Scholar 

  • Silver, S. and Keach, D. 1982. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc. Natl. Acad. Sci. 79: 6114–6118.

    Article  PubMed  CAS  Google Scholar 

  • Silver, S. and Laddaga, R.A. 1990. Molecular genetics of heavy metal resistances in Staphylococcus plasmids. In: Molecular Biology of the Staphylococci. Novick, R.P., ed. VCH Publishers, New York. pp. 531–549.

    Google Scholar 

  • Silver, S. and Misra, T.K. 1988. Plasmid-mediated heavy metal resistances. Ann. Rev. Microbiol. 42: 717–743.

    Article  CAS  Google Scholar 

  • Strandberg, G.W., Shumate II, S.E. and Parrott Jr., J.R. 1981. Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245.

    PubMed  CAS  Google Scholar 

  • Strandberg, G.W. and Arnold Jr., W.D. 1988. Microbial accumulation of neptunium. J. Indus. Microbiol. 3: 329–331.

    Article  CAS  Google Scholar 

  • Summers, A.O. and Silver, S. 1978. Microbial transformations of metals. Ann. Rev. Microbiol. 32: 637–672.

    Article  CAS  Google Scholar 

  • Thieme, R., Pai, E.F., Schirmer, R.H. and Schulz, G.E. 1981. Three-dimensional structure of glutathione reductase at the 2 Ã… resolution. J. Mol. Biol. 152: 763–782.

    Article  PubMed  CAS  Google Scholar 

  • Tisa, L.S. and Rosen, B.P. 1989. Molecular characterization of an anion pump: The arsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194.

    Google Scholar 

  • Tisa, L.S. and Rosen, B.P. 1990. Transport systems encoded by bacterial plasmids. J. Bioenerg. Biomembr. 22: 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C.T., Distefano, M.D., Moore, M.J., Shewchuk, L.M. and Verdine, G.L. 1988. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB J. 2: 124–130.

    PubMed  CAS  Google Scholar 

  • Walts, A.E. and Walsh, C.T. 1988. Bacterial organomercurial lyase: Novel enzymatic protonolysis of organostannanes. J. Amer. Chem. Soc. 110: 1950–1953.

    Article  CAS  Google Scholar 

  • Wang, P.C., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohtake, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol., 55: 1665–1669.

    PubMed  CAS  Google Scholar 

  • Wang, P.C., Mori, T., Toda, K. and Ohtake, H. 1990. Membrane- associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670–1672.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Moore, M., Levinson, H.S., Silver, S., Walsh, C. and Mahler, I. 1989. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury-resistance. J. Bacteriol. 171: 83–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Silver, S. (1991). Bacterial Heavy Metal Resistance Systems and Possibility of Bioremediation. In: Kamely, D., Chakrabarty, A.M., Kornguth, S.E. (eds) Biotechnology: Bridging Research and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3456-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3456-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5529-1

  • Online ISBN: 978-94-011-3456-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics