Skip to main content

Pyrolytic Characteristics of Polysilazanes

  • Conference paper
Inorganic and Organometallic Oligomers and Polymers

Abstract

The behavior of three preceramic polysilazane variations during pyrolysis is discussed. These polymers consist of the monomelic units –[H2SiNCH3]-, -[CH3SiHNH]-, and -[H2SiNCH2CH3]-. Their differing pyrolytic performances are evaluated in relation to polymer structure, functional group, and pyrolytic environment.

The thermal reactivity of the different organic groups and their position on the polymer backbone drastically affect the development of the carbonaceous species in the derived ceramic products. The bonding of hydrogen groups to the polymer’s skeleton leads to different chemical configurations in the amorphous products.

Pyrolysis in ammonia results in the elimination of the carbon content regardless of the type and bonding of the polymer’s organic groups. Different chemical mechanisms are responsible for this phenomenon. The carbon removal occurs before the conversion of the organic moieties to inorganic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Blum, K. B. Schwartz, and R. M. Laine, J. Mater. Sci. 24, 1707 (1989).

    Article  CAS  Google Scholar 

  2. G. T. Burns, T. P. Angelotti, L. F. Hanneman, G. Chandra, and J. A. Moore, J. Mater. Sci. 22, 2609 (1987).

    Article  CAS  Google Scholar 

  3. K. A. Youngdahl, R. M. Laine, R. A. Kennish, T. R. Cronin, and G. A. Balavoine, in Better Ceramics Through Chemistry III, C. J. Brinker, D. E. Clark, and D. R. Ulrich Eds., MRS spring meeting proceedings 121, 489 (1988).

    Google Scholar 

  4. G. T. Burns and M. G. Chandra, J. Am. Ceram. Soc. 72, 333 (1989).

    Article  CAS  Google Scholar 

  5. K. J. Wynne and R. W. Rice, Annu. Rev. Mater. Sci. 14, 297 (1984).

    Article  CAS  Google Scholar 

  6. R. M. Laine, Y. D. Blum, D. Tse, and R. Glaser, in Inorganic and Organometallic Polymers, M. Zeldin, K. J. Wynne, and H. R. Allcock, Eds., ACS Symposium Series 360, 124 (1988).

    Chapter  Google Scholar 

  7. C. Biran, Y. D. Blum, R. M. Laine, R. Glaser, and D. Tse, J. Mol Cat., 48, 183–197 (1988).

    Article  CAS  Google Scholar 

  8. W. Verbeek, U.S. Patent No. 3,853,567 (December 1974).

    Google Scholar 

  9. G. Winter, W. Verbeek, and M. Mansmann, U.S. Patent 3,892,583 (July 1975).

    Google Scholar 

  10. G. E. Legrow, T. F. Lim, J. Lipowitz, and R. S. Reaoch, in Better Ceramics Through Chemistry II, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc., 73, 533 (1986).

    Google Scholar 

  11. J. P. Cannady, U.S. Patent No. 4,535,007 (August 1985).

    Google Scholar 

  12. J. P. Cannady, U.S. Patent No. 4,543,344 (September 1985).

    Google Scholar 

  13. D. Seyferth and G. H. Wiseman, U.S. Patent No. 4,482,669 (November 1984).

    Google Scholar 

  14. D. Seyferth, G. H. Wiseman, J. M. Schwark, Y. F. Yu, and C. A. Poutasse, in Inorganic and Organometallic Polymers, M. Zeldin, K. J. Wynne, and H. R. Allcock, eds., ACS Symposium. Series. 360, 143 (1988).

    Chapter  Google Scholar 

  15. D. Seyferth and G. H. Wiseman, Commun. Am. Ceram. Soc. 67, C-132 (1984).

    Google Scholar 

  16. M. Arai, S. Sakuruda, T. Isoda, and T. Tomizawa, Am. Chem. Soc., Polymer Div. Preprints 27, 407 (1984).

    Google Scholar 

  17. M. Arai, T. Isoda, and O. Funayama, U.S. Patent No. 4,659,850 (April 1987).

    Google Scholar 

  18. Y. D. Blum, K. B. Schwartz, E. J. Crawford, and R. D. Hamlin in Better Ceramics Through Chemistry III edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich, MRS spring meeting proceedings 121, 565 (1988).

    Google Scholar 

  19. K. Okamura, M. Sato, and Y. Hasegawa, Ceram. Int. 13, 55 (1987).

    Article  CAS  Google Scholar 

  20. V. Bazant, V. Chvalousaky, and J. Rathousky, Organosilicon Compounds, (Academic Press, New York), pp. 82–83, (1965).

    Google Scholar 

  21. Y. D. Blum and R. M. Laine, Organometallics 5,2081 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Blum, Y.D., McDermott, G.A., Hirschon, A.S. (1991). Pyrolytic Characteristics of Polysilazanes. In: Harrod, J.F., Laine, R.M. (eds) Inorganic and Organometallic Oligomers and Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3214-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3214-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5417-1

  • Online ISBN: 978-94-011-3214-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics