Skip to main content

Numerical and Experimental Stress Analyses of Bovine Femur for Determining the Mechanical Properties of Calcium-Phosphate Ceramic as an Artificial Bone Implant

  • Chapter
  • 370 Accesses

Abstract

In the present work the stress distribution in a fresh cow femur is determined. The finite element method (FEM) is used for a three-dimensional model with 1500 degrees of freedom. Geometrical and material data are taken for this model from a cow femur. The same bone is used in the compression tests to determine mechanical properties and the results are compared with the calculations.

The objective of this study is to improve the basic knowledge of the stress distribution in a whole femur and further to arrive at a general basis for some applications of ceramic bone implants. The FEM model has been used to study the influence of material parameters and calcium phosphate implants on the stress distribution of a cow femur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rohlman, A., Mossner, U., Bergmann, G. and Kolbel, R. Finite Element Analysis and Experimental Investigation in a Femur with Hip Endoprosthesis, Journal of Biomechanics, vol.16, pp. 727–742, 1983.

    Article  Google Scholar 

  2. Technical Notes, On Modelling of Long Bones in Structural Analysis, Journal of Biomechanics, Vol. 15, pp. 61–69, 1982.

    Article  Google Scholar 

  3. Borders S., Petersen K. R., Orne D., Prediction of Bending Strength of Long Bones from Measurements of Bending Stiffness and Bone Mineral Content, Journal of the Biomechanical Engineering, pp. 40–44, February, 1977.

    Google Scholar 

  4. Hayes, W. C., Swenson L. W., Schurman D. J., Axisymmetric Finite Element Analysis of The Lateral Tibial Plateau, Journal of Biomechanics, Vol. 11, pp. 21–33, 1978.

    Article  CAS  Google Scholar 

  5. Huang H. K., Suarez Faustino R., Evaluation of Cross Sectional Geometry and Mass Density Distribution of Humans and Laboratory Animals Using Computerized Tomography, Journal of Biomechanics, Vol.16, pp. 821–832, 1983.

    Article  CAS  Google Scholar 

  6. Lovejoy C. Owen, Burstein Albert H., Geometrical Properties of Bone Sections Determined by Laminography and Physical Section, Journal of Biomechanics, Vol.17, pp. 231–240, 1984.

    Article  Google Scholar 

  7. Kenner G.H., Taylor L.C., Park J.B., Compressive Strength of Canine Femur, Journal of Biomechanics, Vol. 12, pp. 519–526, 1979.

    Article  CAS  Google Scholar 

  8. Svesnsson, N. L., Valliappan, S. and Wood, R. D., Stress Analysis of Human Femur with Implanted Charnley Prosthesis, Journal of Biomechanics, Vol. 10, pp. 581–588, 1977.

    Article  CAS  Google Scholar 

  9. Klein C., Calcium Phosphate Implant Materials and Biodegradation, at Vrije University, Amsterdam, 1983.

    Google Scholar 

  10. Klein C., Patka, P., den Hollender W., Macroporous Calcium Phosphate bioceramics in dog femora; a Histological study of Interface and Biodegradation, Biomaterials, Vol.10, 1989.

    Google Scholar 

  11. Shigley, J. E., Mechanical Engineering Design, University of Michigan, McGraw-Hill, New York, 1986.

    Google Scholar 

  12. Yamada, H., Strength of Biological Materials, Williams and Wilkins Co., Baltimore, 1970.

    Google Scholar 

  13. Evans, F. Gaynor, Mechanical Properties of Bone, P.H.D., Charles C. Thomas Publisher, Springfield Illinois, 1973.

    Google Scholar 

  14. Fung, Y.C., Biomechanics, University of California, San Diego, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Ekici, B., Altintas, S. (1992). Numerical and Experimental Stress Analyses of Bovine Femur for Determining the Mechanical Properties of Calcium-Phosphate Ceramic as an Artificial Bone Implant. In: Advani, S.G., Blain, W.R., de Wilde, W.P., Gillespie, J.W., Griffin, O.H. (eds) Computer Aided Design in Composite Material Technology III. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2874-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2874-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-781-9

  • Online ISBN: 978-94-011-2874-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics