Skip to main content

Leaf Senescence-induced Alterations in Structure and Function of Higher Plant Chloroplasts

  • Chapter
Photosynthesis: Photoreactions to Plant Productivity

Abstract

Leaf senescence constitutes a crucial aspect of plant life. In this chapter, we highlight various possible reactions involved in the decline of photochemical activity of chloroplasts during leaf senescence. Loss of photosynthetic pigments is the most conspicuous event during this phase. Electron transport activities catalysed by photosystem n and photosystem I (PS II and PS I) also decline during senescence. The progress of senescence appears to affect not only the oxygen-evolving complex but also the QA ⇄ QB site of PS II and cytochrome b 6 lf complex in the electron transport chain. As a combined result of all these perturbations. an imbalance between PS II and PS I catalysed activities is induced. which eventually limits photosynthesis in senescing leaves. The studies on molecular aspects of leaf senescence focus on identification of specific changes in gene expression associated with the onset and progress of senescence phase. A critical review of the current state of knowledge pertaining to senescence-induced changes in thylakoid structure and functional capacities of the photosynthetic membranes is presented. It points to specific directions for future investigation to get a better understanding of the mechanism(s) involved in regulation energy transfer and energy conservation in the senescing chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrol Y.P., Kumar P.A. and Nair T.V.R. (1984) Nilrate uptake, its assimilation and grain nitrogen accumulation Adv Cereal Sci Tech 6: 1–48

    CAS  Google Scholar 

  • Amir-Shapira D., Goldschmidt E.E. and Altmann A. (1987) Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intennediates suggest different degradation pathways for Citrus fruit and parsley leaves. Proc Natl Acad Sci USA 84: 1901–1905

    Article  PubMed  CAS  Google Scholar 

  • Amthor J.S. and McCree K.J. (1990) Carbon balance of stressed plants: A conceptual model for integrating research results. In: (RG Aischer and JR Cumming, eds) Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss, A John Wiley and Sons, Inc, pp 1–15

    Google Scholar 

  • Anderson J.M. and Thomson W.W. (1989) Dynamic molecular organization of the plant thylakoid membrane. In: (WR Briggs, ed) Photosynthesis. Alan R Liss, Inc, New York, pp 161–182

    Google Scholar 

  • Andreasson L.E. and Vanngard T. (1988) Electron ttansport in photosystems I and II. Annu Rev Plant Physiol Mol Biol 39: 379–411

    Article  CAS  Google Scholar 

  • Andrews T.J. and Lorimer O.H. (1987) Rubisco: Structure, mechanisms, and prospects for improvement. In: (MD Hatch and NK Boardman, eds) The Biochemistry of Planta—A Comprehensive Treatise, Vol 10, Academic Press, pp 131–218

    CAS  Google Scholar 

  • Barber J. and Marder J.B. (1986) Photosynthesis and the application of molecular genetics. In: (OE Russell, ed) Biotechnology and Genetic Engineering Reviews, Vol 4, Intercept Ltd, Ponteland, Newcastle upon Tyne, UK, pp 355–404

    Google Scholar 

  • Bassi R., Rigoni F. and Oiacometti O.M. (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52: 1187–1206

    Article  CAS  Google Scholar 

  • Beevers L. (1976) Senescence. In: (J Bonner and JE Varner, eds.) Plant Biochemistry. Academic Press, New York. pp 771–794

    Google Scholar 

  • Ben-David H., Nelson N. and Gepstein S. (1983) Differential changes in the amount of protein complexes in the chloroplast membrane during senescence of oat and bean leaves. Plant Physiol 73: 507–510

    Article  PubMed  CAS  Google Scholar 

  • Biswal U.C. and Biswal B. (1988) Ultrastructural modifications and biochemical changes during senescence of chloroplasts. Int Rev Cytol 113: 271–321

    Article  CAS  Google Scholar 

  • Biswal U.C. and Mohanty P. (1976a) Aging induced changes in photosynthetic electron transport of detached barley leaves. Plant and Cell Physiol 17: 323–331

    CAS  Google Scholar 

  • Biswal U.C. and Mohanty P. (1976b) Dark stress induced senescence of detached barley leaves: Alteration in the absorption characteristic and photochemical activity of the chloroplasts isolated from senescing leaves. Plant Sci Lett 7: 371–379

    Article  CAS  Google Scholar 

  • Biswal U.C. and Mohanty P. (1978) Changes in the ability of photophosphorylation and activities of surfacebound adenosine triphosphatase and ribulose diphosphate carlloxylase of chloroplasts isolated from the barley leaves senescing in darkness. Physiol Plant 44: 127–133

    Article  CAS  Google Scholar 

  • Biswal U.C., Singhal O.S. and Mohanty P. (1979) Dark stress induced senescence of barley leaves: Changes in chlorophyll a fluorescence of isolated chloroplasts. Indian J Exp Biol 17: 262–264

    CAS  Google Scholar 

  • Bricker T.M. and Newman O.W. (1982) Changes in the chlorophyll-proteins and electron ttansport activities of soyabean (Glycine max L. cv. Wayne) cotyledon chloroplasts during senescence. Photosynthetica 16: 239–244

    CAS  Google Scholar 

  • Brody S.S. (1983) Spectral changes in chloroplasts during aging. Photochem Photobiol 37: 585–586

    Article  CAS  Google Scholar 

  • Burke J.J., Kalt-Torres W., Swafford J.R., Burton J.W. and Wilson R.F. (1984) Studies on genetic male-sterile soybeans. m The initiation of monocarpic senescence. Plant Physiol 75: 1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Camp P.J., Huber S.C., Burke J.J. and Moreiand D.E. (1982) Biochemical changes that occur during senescence of wheat leaves. I Basis for reduction of photosynthesis. Plant Physiol 70: 1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Chitinis P.R. and Thornber J.P. (1988) The major light-harvesting complex of photosystem IT: Aspects of its molecular and cell biology. In: (Govindjee, HJ Bohnert, DA Bryant, JE Mullet, WL Ogren, H Pakrasi and CR Somerville, eds) Molecular Biology of Photosynthesis. Kluwer Acad Publ Dordrecht, The Netherlands, pp 259–281

    Chapter  Google Scholar 

  • Choe H.T. and Thimann K.V. (1977) The retention of photosynthetic activity by senescing chloroplasts of oat leaves. Planta 135: 101–107

    Article  CAS  Google Scholar 

  • Choudhury N.K. and Biswal U.C. (1979) Changes in photoelectron transport of chloroplast isolated from dark stressed leaves of maize seedlings. Experientia 35: 1036–1037

    Article  PubMed  CAS  Google Scholar 

  • Cuello J., Quiles M.J. and Sabater B. (1984) Role of protein synthesis in the regulation of senescence in detached barley leaves. Physiol Plant 57: 260–266

    Google Scholar 

  • Dalling M.J., Tang A.B. and Huffaker R.C. (1983) Evidence for the existence of peptide hydrolase activity associated with chloroplasts isolated from barley mesophyll protoplasts. Z. Pflanzenphysiol 111: 311–318

    CAS  Google Scholar 

  • Davies T.O.E., Thomas H. and Rogers U. (1988) Catabolism of cytochrome f in a senescence mutant of Festuca pratensis. Biochem Soc Trans 16: 1054

    CAS  Google Scholar 

  • Demmig-Adams B., Winter K., Kruger A. and Czygan F.C. (1989) Light stress and photoprotection related to carotenoid zeaxanthin in higher plants. In: (WR Briggs, ed) Photosynthesis. Alan R Liss, Inc, New York, pp 375–391

    Google Scholar 

  • Dhindsa R.S., Dhindsa P.P. and Thorpe T.A. (1981) Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32: 93–101

    Article  CAS  Google Scholar 

  • Dodge J.D. (1970) Changes in chloroplast fme structure during the autumnal senescence of Betula leaves. Ann Bot 34: 817–824

    Google Scholar 

  • Duggelin T., Bortlik K., Gut H., Matile P. and Thomas H. (1988) Leaf senescence in Festuca pratensis: Accumulation of lipofuscin-like compounds. Physiol Plant 74: 131–136

    Article  Google Scholar 

  • DuPont J. and Siegenthaler P.A. (1986) A parallel study of pigment bleaching and cytochrome breakdown during aging of thylakoid membranes. Plant Cell Physiol 27: 437–484

    Google Scholar 

  • Duysens L.N.M. (1989) The discovery of the two photosynthetic systems: A personal account. Photosynth Res 21: 61–79

    CAS  Google Scholar 

  • Evans J.R. and Seemann J.R. (1989) The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences, and control. In: (WR Briggs, ed.) Photosynthesis, Alan R Liss, Inc, New York, pp 183–205

    Google Scholar 

  • Fong F. and Heath R.L. (1977) Age dependent changes in phospholipids and galactolipids in primary bean (Phaseolus vulgaris) leaves. Phytochemistry 16: 215–217

    Article  CAS  Google Scholar 

  • Ford O.M. and Shibles R. (1988) Photosynthesis and other traits in relation to chloroplast number during soyabean senescence. Plant Physiol 86: 108–111

    Article  PubMed  CAS  Google Scholar 

  • Fragata M. (1975) Effects of aging on chlorophyll fluorescence and photosystem II electron transport in isolated chloroplasts. Can J Bot 53: 2842–2845

    Article  CAS  Google Scholar 

  • Frith G.J.T. and Dalling M.J. (1980) The role of peptide hydrolases in leaf senescence. In (KV Thimann, ed) Leaf Senescence, CRC Press, Florida, pp 117–130

    Google Scholar 

  • Garcia S., Martin M. and Sabater B. (1983) Protein synthesis by chloroplasts during the senescence of barley leaves. Physiol Plant 57: 260–266

    Article  CAS  Google Scholar 

  • Gepstein S. (1988) Photosynthesis. In: (LO Nooden and AC Leopold, eds) Senescence and Aging in plants, Academic Press, New York, pp 85–104

    Google Scholar 

  • Gnanam A., Subbaiah C.C. and Mannan M. (1988) Protein synthesis by isolated chloroplasts. In: (Govindjee, HJ Bohnert, W Bottomley, OA Bryant, JE Mullet, WL Ogren, H Pakrasi, CR Somerville, eds) Molecular Biology of Photosynthesis, Kluwer Academic Publishers, The Netherlands, pp 777–800

    Chapter  Google Scholar 

  • Govindjee, Amesz J. and Fork D.C. (1986) (eds) Light Emission by Plants and Bacteria, Academic Press, Orlando, Florida

    Google Scholar 

  • Govindjee and Bazzaz M. (1967) On the Emerson enhancement effect in ferricyanide Hill reaction in chloroplast fragments. Photochem Photobiol 6: 885–894

    CAS  Google Scholar 

  • Govindjee and Whitemarsh J. (1982) Introduction to photosynthesis: Energy conversion by plants and bacteria. In: (Govindjee, ed) Photosynthesis, Vol. 1. Energy Conversion by Plants and Bacteria, Academic Press, pp 1–16

    CAS  Google Scholar 

  • Grover A., Koundal K.R. and Sinha S.K. (1985) Senescence of attached leaves: Regulation by developing pods. Physiol Plant 63: 87–92

    Article  CAS  Google Scholar 

  • Grover A., Sabat S.C. and Mohanty P. (1986a) Effect of temperature on photosynthetic activities of senescing detached wheat leaves. Plant Cell Physiol 27: 117–126

    CAS  Google Scholar 

  • Grover A., Sabat S.C. and Mohanty P. (1986b) Relative sensitivity of various specttal forms of photosynthetic pigments to leaf senescence in wheat (Triticum aestivum L). Photosynth Res 10: 223–229

    Article  CAS  Google Scholar 

  • Grover A., Sabat S.C. and Mohanty P. (1987) Does the loss of leaf chlorophyll during senescence arise due to loss in chloroplast number or chlorophyll content. Biochem Physiol Pflanzen 192: 481–484

    Google Scholar 

  • Grover A. and Sinha S.K. (1985) Senescence of detached leaves in pigeon pea and chick pea: Regulation by developing pods: Physiol Plant 65: 503–507

    Article  CAS  Google Scholar 

  • Grover A. and Sinha S.K. (1988) Reproductive sink induced senescence of leaves in crop plants. In: (R Singh and SK Sawhney, eds) Recent Advances in Frontier Areas of Plant Biochemistry, Prentice Hall of India, India, pp 59–81

    Google Scholar 

  • Gruszecki W.I., Veeranjaneyulu K., Zelent B. and Leblanc R.M. (1991) Energy transfer process during senescence: Ruorescence and photoacoustic studies of intact pea leaves. Biochim Biophys Acta 1056: 173–180

    Article  CAS  Google Scholar 

  • Guera A., Martin M. and Sabater B. (1989) Subchloroplast localization of polypeptides synthesized by chloroplasts during senescence. Physiol Plant 75: 382–388

    Article  CAS  Google Scholar 

  • Haehnel W. (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Harding S.A., Guikema J.A. and Paulsen G.M. (1990) Photosynthetic decline from high temperature stress during maturation of wheat. I. Interaction with senescence processes. Plant Physiol 92: 648–653

    Article  PubMed  CAS  Google Scholar 

  • Hansson O. and Wydrzynski T. (1990) Current perception of photo system II. Photosynth Res 23: 131–162

    Article  CAS  Google Scholar 

  • Hamischfeger G. (1973) Chloroplast degradation in ageing cotyledons of pumpkins. J Exp Bot 24: 1236–1246

    Article  Google Scholar 

  • Hamischfeger G. (1974) Studies on chloroplast degradation in vivo. III Effect of aging on Hill activity of plastids from Cucurbita cotyledons. Z Pflanzenphysiol 71: 308–312

    Google Scholar 

  • Harwood J.L., Jones A.V.H.M. and Thomas H. (1982) Leaf senescence in non-yellowing mutant of Festuca pratensis. III Total acyl lipids of leaf tissue during senescence. Planta 156: 152–157

    Article  CAS  Google Scholar 

  • Hashimoto H., Kura-Hotta M., Katoh S. (1989) Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seedlings. Plant Cell Physiol 30: 707–715

    CAS  Google Scholar 

  • Hernandez-Gil R. and Schaedle M. (1973) Functional and structural changes in senescing Populus deltoides (Bartr.) chloroplasts. Plant Physiol 51: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Hetherington S.E. and Oquist G. (1988) A comparison of chlorophyll fluorescence measurements, postchilling growth and visible symptoms of injury in Zea mays. Physiol Plant 72: 241–247

    Article  CAS  Google Scholar 

  • Hilditch P. (1986) Immunological quantification of the chlorophyll a/b binding protein in senescing leaves of Festuca pratensis Huds. Plant Sci 45: 95–99

    Article  CAS  Google Scholar 

  • Hilditch P.I., Thomas H., Thomas B.J., and Rogers U. (1989) Leaf senescence in a non-yellowing mutant of Festuca pratensis: Proteins of photosystem II. Planta 177: 265–272

    Article  CAS  Google Scholar 

  • Hiratsuka J., Shimada H., Whittier R., Ishibushi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C.R., Meng B.Y., Li Y.Q., Kanno A., NishiZawa Y., Hirai A., Shinozaki K. and Sugiura M. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Holloway P.J., Maclean O.J. and Scott K.J. (1983) Rate limiting steps of electron transport in chloroplasts during ontogeny and senescence of barley. Plant Physiol 72: 795–801

    Article  PubMed  CAS  Google Scholar 

  • Hoshina S., Kazi T. and Nishida K. (1975) Photoswelling and light-inactivation of isolated chloroplast. I Change in lipid content in light-aged chloroplasts. Plant Cell Physiol 16: 465–474

    CAS  Google Scholar 

  • Hoshina S., Mohanty P. and Fork D.C. (1983) Temperature dependent changes in absorption and fluorescence properties of the cyanobacterium Anacystis nidulans. Photosynth Res 5: 347–360

    Article  Google Scholar 

  • Hsu B-D., Lee J-Y. and Pan R-L. (1987) The high-affinity binding site for manganese on the oxidizing side of photosystem II. Biochim Biophys Acta 890: 89–96

    Article  CAS  Google Scholar 

  • Huffaker R.C. and Miller B.L. (1978) Reutilization of ribulose bisphosphate carboxylase. In: (HW Siegelman and G Hind, eds) Brookhaven Symposium on Photosynthetic Carbon Assimilation, Plenum Publishing Corporation, New York, pp 139–152

    Chapter  Google Scholar 

  • Izawa S. (1980) Acceptors and donors for chloroplast electron transport. Meth Enzymol 69: 413–433

    Article  CAS  Google Scholar 

  • Jayabaskaran C., Kuntz M., Guillemant P. and Weil J-H. (1990) Variations in the levels of chloroplast tRNAs and arninoacyl tRNA synthetases in senescing leaves of Phaseolus vulgaris. Plant Physiol 92: 136–140

    Article  PubMed  CAS  Google Scholar 

  • Jenkins G.I., Baker N.R., Bradbury M. and Woolhouse H. (1981a) Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. III Kinetics of chlorophyll fluorescence emission from intact leaves. J Exp Bot 31: 999–1008

    Article  Google Scholar 

  • Jenkins G.I., Baker N.R. and Woolhouse H. (1981b) Changes in chlorophyll content and organization during senescence of the primary leaves of Phaseolus vulgaris L. in relation to photosynthetic electron transport. J Exp Bot 32: 1009–1020

    Article  CAS  Google Scholar 

  • Jenkins G.I. and Woolhouse H.W. (1981a) Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. I Non-cyclic transport. J Exp Bot 32: 467–478

    Article  CAS  Google Scholar 

  • Jenkins G.I. and Woolhouse H.W. (1981b) Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. II The activity of photosystems one and two, and a note on the site of reduction of ferricyanide. J Exp Bot 32: 989–997

    Article  CAS  Google Scholar 

  • Joyard J., Block M.A., Alban C. and Douce R. (1989) The plastid envelope membranes and their contribution to plastid membrane biogenesis. In: (WR Briggs, ed) Photosynthesis, Alan R Liss, Inc, New York, pp 331–345

    Google Scholar 

  • Kar M. and Mishra O. (1976) Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57: 315–319

    Article  PubMed  CAS  Google Scholar 

  • Kasemir H., Rosemann O. and Oelmuller R. (1988) Changes in ribulose-I, 5-bisphosphate carboxylase and its translatable small subunit mRNA levels during senescence of mustard (Sinapis alba) cotyledons. Physiol Plant 73: 257–264

    Article  CAS  Google Scholar 

  • Kato M. and Shimizu S. (1985) Chlorophyll metabolism in higher plants. VI Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol 26: 1291–1301

    CAS  Google Scholar 

  • Kawakami N. and Watanbe A. (1988a) Change in gene expression in radish cotyledons during dark-induced senescence. Plant Cell Physiol 29: 33–42

    CAS  Google Scholar 

  • Kawakami N. and Watanbe A. (1988b) Effects of light illumination on the population of translatable mRNA in radish cotyledons during dark-induced senescence. Plant Cell Physiol 29: 347–353

    CAS  Google Scholar 

  • Klein B.P., Grossman S., King D., Cohen B.S. and Pinsky A. (1984) Pigment bleaching, carbonyl production and antioxidant effects during the anaerobic Jipooxygenase reaction. Biochim Biophys Acta 793: 72–79

    Article  CAS  Google Scholar 

  • Kochritz A., Heike B. and Hoffman P. (1984) Linolenic acid-induced inhibition of photosynthetic electron transport in chloroplasts isolated from wheat seedlings (Triticum aestivum L.) of different age. Biochem Physiol Pflanzen 179: 219–225

    Google Scholar 

  • Kura-Hotta M., Satoh K. and Katoh S. (1987) Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol 28: 1321–1329

    CAS  Google Scholar 

  • Kuroki M., Shioi Y. and Sasa T. (1981) Purification and properties of soluble chlorophyllase from the leaf sprouts. Plant Cell Physiol 22: 717–725

    CAS  Google Scholar 

  • Lagoutte B. and Mathis P. (1989) The photosystem I reaction centre: Structure and photochemistry. Photochem Photobiol 49: 833–844

    Article  CAS  Google Scholar 

  • Lamppa G.K., Elliot L.V. and Bendich A.I. (1980) Changes in chloroplast number during pea leaf development. An analysis of a protoplast population. Planta 148: 437–443

    CAS  Google Scholar 

  • Lerbs S., Lerbs W., Klyanchko M.I., Romanko E.O., Kulaeva O.N., Wollgiehn R. and Parthier B. (1984) Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: ribulose-I, 5-bisphosphate carboxylase oxygenase. Planta 162: 289–298

    Article  CAS  Google Scholar 

  • Lindoo S.J. and Nooden L.D. (1977) Studies on the behaviour of the senescence signal in Anoka soyabeans. Plant Physiol 59: 1136–1140

    Article  PubMed  CAS  Google Scholar 

  • Liu X.U. and Jagendorf A.T. (1986) Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol 81: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Llellwyn C.A., Fauzi R., Mantoura C. and Brereton R.G. (1990a) Products of chlorophyll photodegradationI. Detection and separation. Photochem Photobiol 52: 1037–1041

    Article  Google Scholar 

  • LJellwyn C.A., Fauzi R., Mantoura C. and Brereton R.G. (1990b) Products of chlorophyll photodegradation. 2. Structural identification. Photochem Photobiol 52: 1043–1047

    Article  Google Scholar 

  • Mae T., Kai N., Makino A. and Ohira K. (1984) Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol 25: 333–336

    CAS  Google Scholar 

  • Makovetzki S. and Goldschmidt E.E. (1976) A requirement for cytoplasmic protein synthesis during chloroplast senescence in the aquatic plant Anacharis canadensis. Plant Cell Physiol 17: 859–862

    CAS  Google Scholar 

  • Malik N.S.A. (1987) Senescence in oat leaves: Changes in translatable mRNAs. Physiol Plant 70: 438–446

    Article  CAS  Google Scholar 

  • Martin M. and Sabater B. (1989) Translational control of chloroplast protein synthesis during senescence of barley leaves. Physiol Plant 75: 374–381

    Article  CAS  Google Scholar 

  • Martinoia E., Heck U., Dalling M.I. and Matile Ph. (1983) Changes in chloroplast number and chloroplast constituents in senescing barley leaves. Biochem Physiol Pflanzen 178: 147–155

    CAS  Google Scholar 

  • Matile P., Duggelin T., Schellenberg M., Rentsch D., Bortlik K., Peisker C. and Thomas H. (1989) How and why is chlorophyll broken down in senescent leaves. Plant Physiol Biochem. 27: 595–604

    CAS  Google Scholar 

  • Maunders M.I., Brown S.B. and Woolhouse H.W. (1983) The appearance of chlorophyll derivatives in senescing tissue. Phytochem 22: 2443–2446

    Article  CAS  Google Scholar 

  • McKersie B.D. and Thompson I.E. (1978) Phase behaviour of chloroplast and microsomal membranes during leaf senescence. Plant Physiol 61: 639–643

    Article  PubMed  CAS  Google Scholar 

  • McRae D.G., Chambers J.A. and Thompson I.E. (1985) Senescence related changes in photosynthetic electron transport are not due to alterations in thylakoid fluidity. Biochim Biophys Acta 810: 200–208

    Article  CAS  Google Scholar 

  • Miller B.L. and Huffaker R.C. (1982) Hydrolysis of ribulose-I, 5-bisphosphate carboxylase by endoproteinases from senescing barley leaves. Plant Physiol 69: 58–62

    Article  PubMed  CAS  Google Scholar 

  • Miller B.L. and Huffaker R.C. (1985) Differential induction of endoproteinases during senescence of attached and detached barley leaves. Plant Physiol 78: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Mishra A.N. and Biswal U.C. (1982) Differential changes in the electron transport properties of thylakoid membranes during aging of attached and detached leaves and of isolated chloroplasts. Plant Cell Environ 5: 27–30

    Google Scholar 

  • Mohanty P., Sabat S.C. and Grover A. (1986) Age induced alterations in electron transport chain in wheat (Triticum asstivum L.) leaf chloroplasts. In: (C Rajamanickam, ed) Current Trends in Life Sciences, XIII. Biomembranes: Structure, Biogenesis and Transport, Today and Tomorrow Printers and Publishers, New Delhi, pp 23–26

    Google Scholar 

  • Monroy A.F., McCarthy S.A. and Schwartzbach S.D. (1987) Evidence for translational regulation of chloroplast and mitochondrial biogenesis in Euglena. Plant Sci 51: 61–76

    Article  CAS  Google Scholar 

  • Mullet J.E. (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol 39: 475–502

    CAS  Google Scholar 

  • Murata N., Higashi S-I. and Fujimura Y. (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    Article  CAS  Google Scholar 

  • Nooden L.D. and Guiamet J.J. (1989) Regulation of assimilation and senescence by the fruit in monocarpic plants. Physiol Plant 77: 267–274

    Article  Google Scholar 

  • Nooden L.D. and Nooden S.M. (1985) Effects of morphactin and other auxin transport inhibitors on soyabean senescence and pod development. Plant Physiol 78: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Novitskaya G.V., Rutskaya A. and Malotkovsky Y.G. (1977) Changes in lipid composition and the activity of bean chloroplast membranes with aging. Fiziol Rast 24: 35–43

    CAS  Google Scholar 

  • Oelmuller R. (1990) Photoxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol 49: 229–239

    Article  Google Scholar 

  • O'Farrell P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  • Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K., Shoo Y., Takeuchi M., Chang Z., Aota S., Inokuchi H. and Ozeki H. (1986) Chloroplast gene organisation deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Packham N.K. and Barber J. (1987) Structural and functional comparison of anoxygenic and oxygenic organisms. In: (J Barber, ed) Topics in Photosynthesis, Vol 8. The Light Reactions, Elsevier Science Publishers BV, The Netherlands, pp 1–30

    Google Scholar 

  • Paharia S. (1986) Response of Vigna radiata Wilczek to water stress and sink size. PhD Thesis, Post Graduate School, Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Peoples M.B., Beilharz V.C., Waters S.P., Simpson R.J. and Dalling M.J. (1980) Nitrogen redistribution during grain growth II. Chloroplast senescence and the degradation of ribulose-I, 5-bisphosphate carboxylase. Planta 149: 241–251

    Article  CAS  Google Scholar 

  • Peoples M.B. and Dalling M.J. (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: (LD Nooden and AC Leopold, eds) Senescence and Aging in Plants. Academic Press, New York, pp 181–217

    Google Scholar 

  • Peter G.F. and Thornber J.P. (1988) The antenna components of photosystem II with emphasis on the major pigment-protein, LHC IIb. In: (H Scheer and S Schneider, eds) Photosynthetic Light-harvesting Systems—Organization and Function, Walter de Gruyter and Co, Berlin, pp 175–186

    Google Scholar 

  • Powles S.B. (1984) Photoinhibition of photosyntpesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Reddy P.V. (1986) Combined effect of water stress and reproductive sink on physiological and biochemical changes in cowpea. PhD Thesis, Post Graduate School, Indian Agricultural Research Institute, New Delhi, India

    Google Scholar 

  • Reilly P. and Nelson N. (1988) Photosystem I complex. In: (Govindjee, HJ Bohnert, W Bottomley, DA Bryant, JE Mullet, WL Ogren, H Pakrasi and CR Somerville, eds) Molecular Biology of Photosynthesis, Kluwer Acad Publ, Dordrecht, The Netherlands, pp 485–496

    Chapter  Google Scholar 

  • Renger G. and Govindjee (1985) The mechanism of photosynthetic water oxidation. Photosynth Res 6: 33–55

    Article  CAS  Google Scholar 

  • Roberts D.R., Thompson J.E., Dumbroff E.B., Gepstein S. and Mattoo A.K. (1987) Differential changes in the synthesis and steady state levels ofolthylakoid proteins during bean leaf senescence. Plant Mol Biol 9: 343–353

    Article  CAS  Google Scholar 

  • Ronning C.M., Bouwkamp J.C. and Solomas T. (1991) Observations on the senescence of a mutant nonyellowing genotype of Phaseolus vulgaris L. J Exp Bot 42: 235–241

    Article  CAS  Google Scholar 

  • Sabat S.C., Grover A. and Mohanty P. (1985) Alterations in the characteristics of photosystem II and photosystem I catalyzed electron transports in chloroplasts isolated from senescing detached beetspinach (Beta vulgaris) leaves. Indian J Exp Biol 23: 711–719

    CAS  Google Scholar 

  • Sabat S.C., Grover A. and Mohanty P. (1989a) Senescence induced alterations in the electron transport chain in wheat (Triticum aestivum L.) leaf chloroplasts. J. Photochem. Photobiol. 3: 175–183

    Article  CAS  Google Scholar 

  • Sabat S.C., Grover A. and Mohanty P. (1989b) Selective alterations in photosynthetic pigment characteristics and photoelectron transport during senescence of wheat leaves. In: (OS Singhal, J Barber, RA Dilley, Govindjee, R Haselkorn and P Mohanty, eds) Photosynthesis-Molecular Biology and Bioenergetics. Narosa Publishing House, pp 343–351

    Google Scholar 

  • Sane P.V. (1977) The topography of the thylakoid membrane of the chloroplast. In: (A Trebst and M Avron, eds) Encyclopaedia of Plant-Physiology, Vol 5, Springer-Verlag, Berlin, pp 522–542

    Google Scholar 

  • Scherings O. and Kuiper P.I.C. (1974) Effect of age on adenosine triphosphatase activity from tobacco chloroplasts. Physiol Plant 32: 182–184

    Article  CAS  Google Scholar 

  • Sestak Z. (1972) Leaf age and the shape of the red absorption band of maize chloroplasts. Photosynthetica 6: 75–79

    Google Scholar 

  • Sestak Z (1977) Photosynthetic characteristics during ontogenesis of leaves. 2 Photosystems, components of electron transport chain and photophosphorylation. Photosynthetica 11: 449–474

    CAS  Google Scholar 

  • Sestak Z. (1978) Photosynthetic characteristics during ontogenesis of leaves 3 Carotenoids. Photosynthetica 12: 89–109

    CAS  Google Scholar 

  • Sestak Z. (1982) Leaf ootogeny and photosynthesis. In: (CB lohnson, ed) Physiological Processes Limiting Plant Productivity, Butterworth, pp 147–158

    Google Scholar 

  • Shinozaki K, Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torozawa K., Meng B.Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H. and Sugiura M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Siegenthaler P.A. and Rawyler A. (1977) Aging of the photosynthetic apparatus. V Change in pH dependence of electron transport and relationships to endogenous free fatty acids. Plant Sci Lett 9: 265–273

    Article  CAS  Google Scholar 

  • Siegenthaler P.A. and Rawyler A. (1986) Acyl lipids in thylakoid membranes: Distribution and involvement in photosynthetic functions. In: (LA Staehelin and CJ Arntzen, eds) Photosynthesis III. Photosynthetic Membranes and Light Harvesting Systems. Encyclopaedia of Plant Physiology, Vol 19, SpringerVerlag, Berlin, pp 693–705

    Google Scholar 

  • Simpson O.J. (1990) The structure of photosystem I and II. In: (M Baltscheffsky, ed) Current Research in Photosynthesis, Vol II, Kluwer Acad Puht, Dordrecht, The Netherlands, pp 725–732

    Google Scholar 

  • Srivastava S.K., Vashi O.J. and Naik B.I. (1983) Control of senescence by polyamines and guanidines in young and mature barley leaves. Phytochem 22: 2151–2154

    Article  CAS  Google Scholar 

  • Stoddart J.L. and Thonuls H. (-1982) Leaf senescence. In: (D Boulter and B Parthier, eds) Encyclopaedia of Plant Physiology, Vol 14 A, Springer-Verlag, Berlin, pp 592–636

    Google Scholar 

  • Tevini M. and Steinmuller D. (1985) Composition and functioo of plastoglobuli. II Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163: 91–96

    Article  CAS  Google Scholar 

  • Thimanh K.V. (1980) The senescence of leaves. In: (KV Thimann, ed) Senescence in Plants, CRC Press, Florida, pp 85–115

    Google Scholar 

  • Thimann K.V., Tetley R.R. and Thanh T.V. (1974) The metabolism of oat leaves during senescence II. Senescence in leaves attached to the plant. Plant Physiol 54: 859–862

    Article  PubMed  CAS  Google Scholar 

  • Thomas H. (1977) Ultastructure, polypeptide compositioo and photochemical activity of chloroplasts during foliar senescence of a noo-yeUowing mutant genotype of F estuca pratensis Huds. Planta 137: 53–60

    Article  CAS  Google Scholar 

  • Thomas H. (1982) Leaf senescence in a noo-yeUowing mutant of Festuca pratensis.I. Chloroplast membrane polypeptides. Planta 154: 212–218

    Article  CAS  Google Scholar 

  • Thomas H. and Stoddart J.L. (1975) Separation of chlorophyll degradation from other senescence processes in leaves of mutant genotype of a meadow fescue (F estuca pratensis L.). Plant Physiol 56: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Thomas H. and Stoddart J.L. (1980) Leaf senescence. Annu Rev Plant Physiol 31: 83–111

    Article  CAS  Google Scholar 

  • Trebst A. (1974) Energy conservation in photosynthetic electron transport of chloroplasts. Annu Rev Plant Physiol 25: 423–458

    Article  CAS  Google Scholar 

  • Tyagi A.K., Kelkar N.Y., Kapoor S. and Maheshwari S.C. (1989) Genes of the photosynthetic apparatus of higher plants-Structure, expression and strategies for their engineering. In: (OS Singhal, J Barber, RA Dilley, Govindjee, P Haselkom and P Mohanty, eds) Photosynthesis-Molecular Biology and Bioenergetics, Narosa Publishing House, New Delhi, pp 3–20

    Google Scholar 

  • Veierskov B. and Thimann K.V. (1988) The control of protein breakdown and synthesis in the senescence of oat leaves. Physiol Plant 72: 257–264

    Article  CAS  Google Scholar 

  • Venkatarayappa T., Fletcher R.A. and Thompson I.E. (1984) Retardation and reversal of senescence in bean leaves by benzyladenine and decapitation. Plant Cell Physiol 25: 407–418

    CAS  Google Scholar 

  • Wardley T.M., BhaUa P.L. and DaUing M.J. (1984) Changes in the number and composition of chloroplasts during senescence of mesophyU cells of attached and detached primary leaves of wheat (Triticum aestivum L.). Plant Physiol 75: 421–424

    Article  PubMed  CAS  Google Scholar 

  • Watanbe A. and Imaseki H. (1982) Changes in translatable mRNA in senescing wheat leaves. Plant Cell Physiol 23: 489–497

    Google Scholar 

  • Waters S.P., Noble E.R. and Dalling M.J. (1982) Intracellular localization of peptide hydrolases in wheat (Triticum aestivum L.) leaves. Plant Physiol 69: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Westhoff P., Grone H., Schrubar, H., Oswald A., Streubel M., Ljungberg U. and Herrman R.G. (1988) Mechanisms of plastid and nuclear gene expression during thylakoid membrane biogenesis in higher plants. In: (H Scheer and S Scheider, eds) Photosynthetic Light-harvesting Systems—Organization and Function. Walter de Gruyter and Co Berlin, pp 261–276

    Google Scholar 

  • Willey D.L. and Gray J.C. (1988) Synthesis and assembly of the cytochrome b-f complex in higher plants. In: (Govindjee. HI Bohnert, W Bottomley, DA Bryant. IE Mullet. WL Ogren. H Pakrasi and CR Somerville, eds.) Molecular Biology of PhOtosynthesis. Kluwer Academic Publishers, The Netherlands, pp 497–516

    Chapter  Google Scholar 

  • Winston G.W. (1990) Physiochemical basis for free radical formation in cells: Production and defenses. In: (RG Alscher and JR Cumming, eds) Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Wiley-Liss, A John Wiley and Sons Inc. pp 57–86

    Google Scholar 

  • Wittenbach V.A., Lin W. and Hebert R.B. (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69: 98–102

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse H.W. (1982) Leaf senescence. In: (H Smith and 0 Grierson. eds) Molecular Biology of Plant Development. Vol 18. Botanical Monograph, Blackwell Scientific Publications Oxford, pp 256–281

    Google Scholar 

  • Woolhouse H.W. (1984) The biochemistry and regulation of senescence in chloroplasts. Can J Bot 62: 2934–2942

    Article  CAS  Google Scholar 

  • Yoshida Y. (1961) Nuclear control of chloroplast activity in Elodea leaf cells. Protoplasma 54: 476–492

    Article  Google Scholar 

  • Young A. and Britton G. (1990) Carotenoids and stress. In: (RG Alscher and JR Cumming, eds) Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss, A John Wiley and Sons, Inc, pp 87–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grover, A., Mohanty, P. (1993). Leaf Senescence-induced Alterations in Structure and Function of Higher Plant Chloroplasts. In: Abrol, Y.P., Mohanty, P., Govindjee (eds) Photosynthesis: Photoreactions to Plant Productivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2708-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2708-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5200-9

  • Online ISBN: 978-94-011-2708-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics