Skip to main content

Immobilized Biomolecules for Detection of Environmental Pollutants

  • Chapter
Uses of Immobilized Biological Compounds

Part of the book series: NATO ASI Series ((NSSE,volume 252))

  • 237 Accesses

Abstract

Biosensors which incorporate immobilized enzymes, receptors, antibodies or microbes have been used to measure compounds of environmental significance as diverse as phenolics, ammonia, formaldehyde, benzo(a)pyrene, PCBs, and pesticides. Although a variety of biosensor assay formats have been reported, there are two basic mechanisms for operation: detection of a substrate or product of biocatalysis, and detection of a stoichiometric binding event. Most reported biosensors use one or the other of these mechanisms. Herein reported, however, are two unique biosensors which use both mechanisms to detect organophosphate (OP) and carbamate pesticides. Most OP and some carbamate pesticides bind stoichiometrically to, and inhibit acetylcholinesterase (AChE) activity. Consequently, biosensors using this enzyme are able to catalytically amplify the binding event. Two AChE-based biosensors were developed using different enzyme immobilization and signal transduction schemes. The fiber-optic biosensor uses a fluorescein isothiocyanate (FITC) label to report AChE activity. Signal transduction was accomplished by catalysis-induced pH changes in the local environment of the enzyme which changed the optical properties of the FITC probe. The AChE-based light addressable Potentiometrie (LAP) biosensor measures AChE immobilized to a nitrocellulose membrane. Signal transduction in this case was accomplished using the LAP transducer which is sensitive to small changes in surface potential resulting from AChE-induced pH changes in solution. Both of these biosensors responded similarly to various OP and carbamate pesticides despite the use of dramatically different enzyme immobilization and signal transduction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kumaran, C. Tran-Minh, Anal. Biochem., 200, 187, (1992).

    Article  CAS  Google Scholar 

  2. M.F. Leon-Gonzales, A. Townshend, Anal. Chim. Acta, 236, 267, (1990).

    Article  Google Scholar 

  3. M.K. Lewis, M.E. Eldefrawi, Anal. Biochem., 57, 588, (1974).

    Article  CAS  Google Scholar 

  4. G.G. Guilbault, D.N. Kramer, Anal. Chem., 37, 1675, (1965).

    Article  CAS  Google Scholar 

  5. J.C. Fernando, K.R. Rogers, N.A. Anis, J.J. Valdes, R.G. Thompson, A.T. Eldefrawi, M.E. Eldefrawi, J. Agric. Food Chem., 41, 511, (1993).

    Article  CAS  Google Scholar 

  6. G. Baum, F.B. Ward, Anal. Chem., 42, 487, (1971).

    CAS  Google Scholar 

  7. P. Durand, A. David, D. Thomas, Biochim. Biophvs. Acta, 527, 277, (1978).

    Article  CAS  Google Scholar 

  8. P. Skladal, M. Mascini, Biosensors & Bioelectronics, 7, 335, (1992).

    Article  CAS  Google Scholar 

  9. J.L. Marty, K. Sode, I. Karube, Electroanal., 4, 249, (1992).

    Article  CAS  Google Scholar 

  10. L. Campanella, R. Cocco, M.P. Sammartino, M. Tomassetti, Sci. Tot. Environ., 123/124, 1, (1992).

    Article  Google Scholar 

  11. C. Dumschat, H. Muller, K. Stein, G. Schwedt, Anal. Chim. Acta, 252, 7, (1991).

    Article  CAS  Google Scholar 

  12. J.N. Ngwainbi, P.H. Foley, S.S. Kuan, G.G. Guilbault, J. Am. Chem. Soc., 108, 5444, (1986).

    Article  Google Scholar 

  13. W. Hobel, J. Polster, Fresenius J. Anal. Chem., 343, 101, (1992).

    Article  Google Scholar 

  14. K.R. Rogers, C.J. Cao, J.J. Valdes, A.T. Eldefrawi, M.E. Eldefrawi, Fundam. Appl. Toxicol., 16, 810, (1991).

    Article  CAS  Google Scholar 

  15. T. Glass, S. Lackie, T. Hirschfeld, Appl. Opt., 26, 2181, (1987).

    Article  CAS  Google Scholar 

  16. L. Bousse, G. Kirk, G. Sigal, Sensors and Actuators, B1, 555, (1990).

    CAS  Google Scholar 

  17. G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, Biochem. Pharmacol., 7, 88, (1961).

    Article  CAS  Google Scholar 

  18. A. Karlin, Biochim. Biophys. Acta, 139, 358, (1967).

    Article  CAS  Google Scholar 

  19. G.P. Royer, In, Immobilized Enzymes, Antigens, Antibodies, and Peptides, (H. Weetal ed.), p.49, Marcel Dekker, New York, (1975).

    Google Scholar 

  20. K.R. Rogers, J.N. Lin, Biosensors & Bioelectronics, 7, 317, (1992).

    Article  CAS  Google Scholar 

  21. K.R. Rogers, E.J. Poziomek, In, Third International Symposium: Field Screening Methods for Hazardous Wastes and Toxic Chemicals, (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rogers, K.R. (1993). Immobilized Biomolecules for Detection of Environmental Pollutants. In: Guilbault, G.G., Mascini, M. (eds) Uses of Immobilized Biological Compounds. NATO ASI Series, vol 252. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1932-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1932-0_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4854-5

  • Online ISBN: 978-94-011-1932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics