Skip to main content

Can New Biosensors be Deduced from Sensing in Biology ?

  • Chapter
Uses of Immobilized Biological Compounds

Part of the book series: NATO ASI Series ((NSSE,volume 252))

Abstract

Natural recognition and transduction systems are checked in regard to their possible immediate or mediate use in biosensors. The majority of the sensors known so far base on enzymes as biological recognition part, and start transduction only after the catalytic formation of a secondary chemical signal. On the other hand in nature transduction is not catalytic but uses a conformational change for direct or indirect — after a chemical amplification cascade — modulation of a membrane permeability. The use of “ion channels” for biosensor construction would in principle be possible, however, suffer from the instability and complexity of the biological system. More promising seem to be the attempts for the development of artificial ions channels. While synthetic ionophors have already successfully been used in sensors, the corresponding application of carrier proteins is just at the beginning, however, the construction of biomimetic systems seems to be more advantageous. Antibodies as most versatile and inexpensive recognition molecules have often been used in biosensors with various transducing principles. A disadvantage is the slow kinetics of the dissociation of antigen-antibody complexes which implies problems with the regeneration of sensors. Therefore in some cases the competition of supramolecular artificial “receptors” may be more promising. The mechanism of odor and taste perception is to-day well understood, but it would not be worthwhile to transfer it to artificial sensors. Nevertheless, the implied adaption of natural receptors to demands of the molecules to be recognized could be a model for computer aided molecular conception of artificial receptors. As the natural selectivity could certainly not be attained, array arrangements could be used for partial compensation. Whenever proteins are integrated in biosensors, one should regard their instability and include into further sensor developments methods for protein stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-L. Schmidt, W. Schuhmann, F.W. Scheller a. F. Schubert, in “Sensors — A Comprehensive Survey” (W. Göpel, J. Hesse, J.N. Zemel, eds.), VCH Weinheim, Weinheim, 1992; Vol.3, pp. 719–817. Specific Features of Biosensors.

    Google Scholar 

  2. E. Neher u. B. Sackmann, Spektrum der Wissenschaft 1992(5), 48

    Google Scholar 

  3. H. Repke u. C. Liebermann (eds), Membranrezeption und ihre Effektorsysteme, VCH Weinheim, 1987

    Google Scholar 

  4. J. Ramsden, F. Hucho a. H. Vogel, in Biosensors; Fundamentals, Technologies and Applications, F. Scheller a. R.D. Schmid (eds), Springer Verlag, Berlin 19., p. 435

    Google Scholar 

  5. C. Gitler a. J. Yuli, note in Model 1992/93, Bericht aus Rehovoth, Weizmann Institute of Science

    Google Scholar 

  6. M.J. Pregel, L. Jullien u. J.-M. Lehn, Angew. Chem. 104, 1695 (1992).

    Article  CAS  Google Scholar 

  7. N. Sugao, M. Sugawara, H. Minami, M. Uto a. Y. Umezawa, Anal.Chem. 1993, in press

    Google Scholar 

  8. F.F. Bier, W. Stöcklein, M. Böcher, U. Bilitewski a. R.D. Schmid, Sensors and Actuators B 7, 509 (1992)

    Article  Google Scholar 

  9. J. Polster a. F. Schmidtchen, unpublished results

    Google Scholar 

  10. U.E. Spichinger, M. Kuratli a. W. Simon, Biosensors and Bioelectronics 7, 715 (1992)

    Article  Google Scholar 

  11. T. Vering, D. Seiwald, W. Schuhmann, H.-L. Schmidt, A. Heller, L. Ye a. B. Speiser, manuscript submitted to J.Am.Chem.Soc.

    Google Scholar 

  12. J. Higgins a. H.A.O. Hill Essays in Biochemistry 21 (1985), 119–145

    CAS  Google Scholar 

  13. L. Ye, M. Hämmerle, W. Schuhmann, H.-L. Schmidt, A.J.J. Olsthoorn, J.A. Duine a. A. Heller, Anal.Chem. 65 (1993) 238–241.

    Article  CAS  Google Scholar 

  14. H. Hatt, Schering Botschaften aus Forschung and Medizin 7(1), 73 (1992)

    Google Scholar 

  15. Y. Aoyama, Y. Tanaka a. S. Sugahara, J.Am.Chem.Soc. 111 (1989) 5397–5404

    Article  CAS  Google Scholar 

  16. S. Riehl, R. Medina, W. Schuhmann a. H.-L. Schmidt, unpublished

    Google Scholar 

  17. ü. Englbrecht a. H.-L. Schmidt, Abstract Dechema Jahrestagung der Biotechnologen, 1993

    Google Scholar 

  18. J. W Lengeier, La Recherche 21, 20 (1990)

    Google Scholar 

  19. C.Lehn, J.Danzer, H.-L.Schmidt, M. Mayer u. M. Staudenbauer, Abstract Dechema Jahrestagung der Biotechnologen, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmidt, HL. (1993). Can New Biosensors be Deduced from Sensing in Biology ?. In: Guilbault, G.G., Mascini, M. (eds) Uses of Immobilized Biological Compounds. NATO ASI Series, vol 252. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1932-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1932-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4854-5

  • Online ISBN: 978-94-011-1932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics