Skip to main content

Topology and Generalized Layout Optimization of Elastic Structures

  • Chapter
Topology Design of Structures

Part of the book series: NATO ASI Series ((NSSE,volume 227))

Abstract

An overview of the method of homogenization to find the optimum layout of a linearly elastic structure is presented. The work discussed here presents a formulation to address the simultaneous optimization of the topology, shape and size of the structure. The discussion includes optimization of plane, plate and three dimensional shell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avellaneda, M. , “Optimal Bounds and Microgeometries for Elastic Two-Phase Composites”, SIAM J. Appl. Math., 47, 1987, 1216–1228.

    Article  MathSciNet  MATH  Google Scholar 

  2. Avellaneda, M. , “Bounds on the Effective Elastic Constants of Two-Plane Composite Materials.” Proc.Sem. College de France, X, Brezis, V.; Lions, J.-L. (Eds.), Pitman, London, 1989.

    Google Scholar 

  3. Avellaneda, M.; Milton, G.W. , “Bounds on the Effective Elasticity Tensor Composites based on Two-point Correlation.” In: Hui, D.; Kozik, T.J. (Eds.) Composite Material Technology, ASME, 1989, pp.89–93.

    Google Scholar 

  4. Banichuk, N. V., “Optimal Elastic Plate Shapes in Bending Broblems,” Mekh. Tverd. Tela 10 (5), 1975 pp. 151–158

    MathSciNet  Google Scholar 

  5. Bendsøe, M.P. , “Generalized Plate Models and Optimal Design.” in Eriksen, J. L.; Kinderlehrer, D.; Kohn, R.; Lions, J.-L. (Eds.), Homogenization and Effective Moduli of Materials and Media, The IMA Volumes in Mathematics and Its Applications (Springer, Berlin, 1986), pp. 1–26.

    Chapter  Google Scholar 

  6. Bendsøe, M.P. , “Optimal Shape Design as a Material Distribution Problem”. Structural Optimization 1, 1989, pp. 193–202.

    Article  Google Scholar 

  7. Bendsøe, M.P.; Ben-Tal, A.; Haftka, R.T. , “New Displacement Based Methods for Optimal Truss Topology Design”. Proc. AIAA/ASME/ASCE/AHS/ASC 32nd. Structures, Structural Dynamics and Materials Conference, Baltimore, MD, USA, April 8–10, 1991.

    Google Scholar 

  8. Bendsøe, M.P.; Kikuchi, N. , “Generating Optimal Topologies in Structural Design Using a Homogenization Method”. Comput. Meths. Appl. Mechs. Engrg.71, 1988, pp. 197–224.

    Article  Google Scholar 

  9. Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures., North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  10. Ben-Tal, A., Bendsøe, M.P. “A New Method for Optimal Truss Topology Design”. SIAM J. Optimization (to appear).

    Google Scholar 

  11. Bourgat, J.F., Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients. Lecture Notes in Mathematics, 704,Springer Verlag, Berlin, 330–356.

    Google Scholar 

  12. Cheng, G., Olhoff, N.,“An Investigation Concerning Optimal Design of Solid Elastic Plates” Int. J. Solids Struct., 16, 1982, pp. 305–323.

    MathSciNet  Google Scholar 

  13. Cheng, G., Olhoff, N., “Regularized Formulation for Optimal Design of Axisymmetric Plates.” Int. J. Solids Struct., 18, 1982, pp. 153–170.

    Article  MATH  Google Scholar 

  14. Cioranescu, D., Saint Jean Paulin, J., “Homogenization in Open Sets with Holes.”J. Math.Anal.Appl., 71, 1979, pp. 590–607.

    Article  MathSciNet  MATH  Google Scholar 

  15. Díaz, A., Bendsøe, M.P. , “Shape Optimization of Structures for Multiple Loading Conditions using a Homogenization Method”, Structural Optimization. 4, 1992,pp. 17–22.

    Article  Google Scholar 

  16. Díaz, A., Kikuchi, N. , “Solutions to Shape and Topology Eigenvalue Optimization Problems using a Homogenization Method”, Preprint, Dept. of Mech. Engng., Michigan State University, East Lansing, MI, USA.

    Google Scholar 

  17. Guedes, J.M., Kikuchi, N., “Preand Postprocessing for Materials based on the Homogenization Method with Adaptive Finite Element Methods”. Comput. Meth. Appl. Mech. Engng., 83, 1990, pp. 143–198.

    Article  MathSciNet  MATH  Google Scholar 

  18. Johnson C. and Pitkränta J., “Analysis of Some Mixed Finite Element Methods Related to Reduced Integration,” Math. of Computations, 38 (158), 1982, pp. 375–400.

    Article  MATH  Google Scholar 

  19. Kikuchi, N., Oden, J. T., and Song, Y. J., “Convergence of Modified Penalty Methods and Smoothing Schemes of Pressure for Stoke’s Flow Problems” in Gallagher, R. et al. Finite Elements in Fluids, Vol. 5, John Wiley & Sons,Ltd., 1984, pp. 107–126.

    Google Scholar 

  20. Kikuchi, N., Suzuki, K. and Fukushima, “Layout Optimization Using the Homogenization Method: Generalized Layout Design of Three-Dimensional Shells for Car Bodies.” In.: Rozvany, G.I.N. (Ed.) Optimization of Large Structural Systems, Lecture Notes, NATO-ASI, Berchtesgaden, FRG, 1991, Vol 3., pp. 110–126.

    Google Scholar 

  21. Kohn, R.V., Strang, G., “Optimal Design in Elasticity and Plasticity.” Internat. J. Numer. Meths. Engrg 22, 183–188.

    Google Scholar 

  22. Kohn, R.V., Strang, G., “Optimal Design and Relaxation of Variational Problems”. Comm. Pure Appl. Math., 39, 1986, 1–25 (Part I), 139–182 (Part II) and pp. 353–377 (Part III).

    Article  MathSciNet  Google Scholar 

  23. Lewinski, T. “Effective Models of Composite Periodic Plates III. TwoDimensional Approaches”, Int. J. Solids Structures, 27, 1991, pp. 1185–1203.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lurie, K.A. , Cherkaev, A.V.,“G-Closure of some Particular Sets of Admissible Material Characteristics for the Problem of Bending of Thin Plates.” J. Optim. Theory Appl., 42, 1984, pp. 305–315.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, Z. D., Kikuchi, N., and Hagiwara I., “Structural Topology/Shape optimization for a Frequence Response Problem,” Int. J. for Numerical Methods Engrg. (in review)

    Google Scholar 

  26. Ma, Z. D., Kikuchi, N., and Hagiwara I., “Structural Topology/Shape optimization for a Structural Dynamics Problem,” ASME Winter Annual Meeting. 1992.

    Google Scholar 

  27. Murat F., and Tartar L., “Optimality Conditions and Homogenization,”, in Marino A. et a (Eds.), Nonlinear Variational Problems, Pitman Advanced Publishing Program, Boston, 1985, pp. 1–8.

    Google Scholar 

  28. Pedersen, P., “On Optimal Orientation of Orthotropic Materials”. Structural Optimization, 1, 1989, pp. 101–106.

    Article  Google Scholar 

  29. Pedersen, P., “Bounds on Elastic Energy in Solids of Orthotropic Materials”. Structural Optimization, 2, 1990, pp. 55–63.

    Article  Google Scholar 

  30. Prager, W., “Optimization in Structural Design,” in Bellman, R., Mathematical Optimization Techniques RAND Corp. Report P-396-PR, April 1963, pp. 279– 289.

    Google Scholar 

  31. Rozvany, G.I.N.; Zhou, M. (1991a) : “Applications of the COC Algorithm in Layout Optimization”. in Eschenauer, H.A. , Mattheck, C., Olhoff, N., (Eds.) Proc. Int. Conf. Engrg. Optimization in Design Processes , Karlsruhe, 1990; Lecture Notes in Engineering, 63, 1991, Springer Verlag, pp. 59–70.

    Chapter  Google Scholar 

  32. Rozvany, G.I.N., Zhou, M. (1991b), “Layout and Generalized Shape Optimization by Iterative COC Methods.” In.: Rozvany, G.I.N. (Ed.) Optimization of Large Structural Systems, Lecture Notes, NATO-ASI, Berchtesgaden,FRG, 1991, Vol 3., pp. 81–95.

    Google Scholar 

  33. Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, 127, Springer, Berlin, 1980.

    Google Scholar 

  34. Soto, C. and A. Díaz. (1992) “On the Modeling of Ribbed Plates for Shape Optimization”, Technical Report CDL-92–2, Computational Design Laboratory,Michigan State University, East Lansing, Michigan, USA, 1992.

    Google Scholar 

  35. Suzuki, K., Kikuchi, N. (1991a), “Shape and Topology Optimization for Generalized Layout Problems Using the Homogenization Method.” Comp. Meth. Appl. Mechs. Engng., 1991 (to appear).

    Google Scholar 

  36. Suzuki K. and Kikuchi N., “Generalized Layout Optimization of ThreeDimensional Shell Structures,” in D.A. Field and V. Komokov, Geometric Aspects of Industrial Design, SIAM, Philadelphia, 1992, pp.62–88.

    Google Scholar 

  37. Zhou, M.; Rozvany, G.I.N. ,The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization.Comp. Meth. Appl. Mechs. Engng., 89, 1991,pp. 309–336.

    Article  Google Scholar 

  38. Jog, C.; Haber, R.; Bendsøe, M.P.:” A Displacement-Based Topology Design Method with Self-Adaptive Layered Materials.” this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bendsøe, M.P., Díaz, A., Kikuchi, N. (1993). Topology and Generalized Layout Optimization of Elastic Structures. In: Bendsøe, M.P., Soares, C.A.M. (eds) Topology Design of Structures. NATO ASI Series, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1804-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1804-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4795-1

  • Online ISBN: 978-94-011-1804-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics