Skip to main content

Root growth and functioning under atmospheric CO2 enrichment

  • Chapter
CO2 and biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 14))

Abstract

This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions during the experiment, the growth phase of the plant, and its morphological characteristics. Under non-limiting conditions of water and nutrients for growth, dry matter partitioning to the root is not changed by CO2 enrichment. The increase in root/shoot ratio, frequently observed under limiting conditions of water and/or nutrients, enables the plant to explore a greater soil volume, and hence acquire more water and nutrients. However, more data on changes in dry matter allocation within the root due to atmospheric CO2 are needed. It is concluded that nitrogen fixation is favored by CO2 enrichment since nodule mass is increased, concomitant with an increase in root length. The papers available so far on the influence of CO2 enrichment on mycorrhizal functioning suggest that carbon allocation to the roots might be increased, but also here more experiments are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

LAR,:

leaf area ratio

LWR,:

leaf weight ratio

SWR,:

stem weight ratio

RGR,:

relative growth rate

R/S,:

root/shoot

RWR,:

root weight ratio

References

  • Acock, B. & Pasternak, D. 1986. Effects of CO2 concentration on composition, anatomy, and morphology of plants. In: Enoch H. Z. & Kimball B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. II. Physiology, yield and economics. pp. 41–53. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Allen, Jr, L. H., Vu, J. C. V., Valle, R. R., Boote, K. J. & Jones, P. H. 1988. Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop. Sci. 28: 84–94.

    Article  Google Scholar 

  • Bazzaz, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst. 21: 167–196.

    Article  Google Scholar 

  • Bhattacharya, N. C., Biswas, P. K., Bhattacharya, S., Sionit, N. & Strain, B. R. 1985. Growth and yield response of sweet potato to atmospheric CO2 enrichment. Crop Science 25: 975–981.

    Article  Google Scholar 

  • Billings, W. D., Luken, J. O., Mortenson, D. A. & Peterson, K. M. 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53: 7–11.

    Article  Google Scholar 

  • Billings, W. D., Luken, J. O., Mortenson, D. A. & Peterson, K. M. 1983. Increasing atmospheric carbon dioxide: possible effects on arctic tundra. Oecologia 58: 286–289.

    Article  Google Scholar 

  • Billings, W. D., Peterson, K. M., Luken, J. O. & Mortenson, D. A. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.

    Article  Google Scholar 

  • Boot, R. G. A. 1989. The significance of size and morphology of root systems. In: Lambers, H, Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and Consequences of Variation in Growth rate and Productivity. pp 299–311. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Brouwer, R. 1962. Distribution of dry matter in the plant. Neth. J. Agric. Sci. 10: 361–376.

    Google Scholar 

  • Brouwer, R. 1983. Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31: 335–348.

    Google Scholar 

  • Bunce, J. A. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot. 65: 637–642.

    CAS  Google Scholar 

  • Campagna, M. A. & Margolis, H. A. 1989. Influence of shortterm atmospheric CO2 enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development. Can. J. For. Res. 19: 773–782.

    Article  Google Scholar 

  • Chapin, F. S. III 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11: 1007–1010.

    Article  Google Scholar 

  • Clough, J. M., Peet, M. M. & Kramer, P. J. 1981. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar. Plant Physiol. 67: 1007–1010.

    Article  PubMed  CAS  Google Scholar 

  • Cure, J. D. & Acock, B. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric. For. Meteorol. 38: 127– 145.

    Article  Google Scholar 

  • Cure, J. D., Israel, D. W. & Rufty, Jr, T. W. 1988. Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Sci. 28: 671–677.

    Article  Google Scholar 

  • Del Castillo, D., Acock, B., Reddy, V. R. & Acock, M. C. 1989. Elongation and branching of roots of soybean plants in a carbon dioxide-enriched aerial environment. Agron. J. 81: 692–695.

    Article  Google Scholar 

  • Den Hertog, J. &, Stulen I. 1990. The effects of an elevated atmospheric CO2 concentration on dry matter and nitrogen allocation. In: Goudriaan, J., Van Keulen, H. & Van Laar, H. H. (eds). The Greenhouse Effect and Primary Productivity in European Agro-ecosystems. pp. 27–30. Pudoc, Wageningen.

    Google Scholar 

  • Den Hertog, J., Stulen, I. & Lambers, H. 1993. Assimilation and allocation of carbon in Plantago major as affected by atmospheric CO2 levels: a case study. Vegetatio: 104/105: 369–378.

    Article  Google Scholar 

  • De Visser, R. 1984. Interactions between energy and nitrogen metabolism in Pisum sativum. Thesis, Groningen.

    Google Scholar 

  • De Willigen, P. & Van Noordwijk, M. 1987. Roots, plant production and nutrient use efficiency. Thesis, Wageningen.

    Google Scholar 

  • Enoch, H. Z. 1990. Crop responses to aerial carbon dioxide. Acta horticulturae 268: 17–33.

    Google Scholar 

  • Finn, G. A. & Brun, W. A. 1982. Effect of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol. 69: 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Ford, M. A. & Thorne, G. N. 1967. Effect of CO2 concentration on growth of sugar-beet, barley, kale and maize. Ann. Bot. 31: 629–694.

    Google Scholar 

  • Gastal, F. & Saugier, B. 1989. Relationships between nitrogen uptake and carbon assimilation in. Plant Cell Environm. 12: 407–418.

    Article  Google Scholar 

  • Gifford, R. M. 1979. Growth and yield of CO2-enriched wheat under water-limited conditions. Aust. J. Plant Physiol. 6: 367–378.

    Article  Google Scholar 

  • Gifford, R. M., Lambers, H & Morison, J. I. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant. 63: 351–356.

    Article  Google Scholar 

  • Hardy, R. W. F. & Havelka, U. D. 1975. Photosynthate as a major factor limiting nitrogen fixation by field grown legumes with emphasis on soybeans. In: Nutman P. S.(ed.), Symbiotic Nitrogen Fixation in Plants. pp 421–439. International Biology Program Series, Vol. 7. Cambridge University Press, London.

    Google Scholar 

  • Hocking, P. J. & Meyer, C. P. 1985. Responses of Noogoora burr (Xanthium occidentale Bertol. ) to nitrogen supply and carbon dioxide enrichment. Ann. Bot. 55: 835–844.

    CAS  Google Scholar 

  • Hughes, A. P. & Cockshull, K. E. 1969. Effects of carbon dioxide concentration on the growth of Callistephus chinensis cultivar Johannistag. 33: 351–365.

    CAS  Google Scholar 

  • Hurd, R. G. 1968. Effects of CO2-enrichment on the growth of young tomato plants in low light. Ann. Bot. 32: 531–542.

    Google Scholar 

  • Jolliffe, P. A. & Ehret, D. L. 1985. Growth of bean plants at elevated carbon dioxide concentrations. Can. J. Bot. 63: 2121–2125.

    Article  Google Scholar 

  • Kaushal, P., Guehl, J. M. & Aussenac, G. 1989. Differential growth response to atmospheric carbon dioxide enrichment in seedlings of Cedrus atlantica and Pinus nigra ssp. Laricio var. Corsicana. Can. J. For. Res. 19: 1351–1358.

    Article  Google Scholar 

  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75: 779–789.

    Article  Google Scholar 

  • Kimball, B. A. 1986. CO2 stimulation of growth and yield under environmental restraints. In: Enoch H. Z. & Kimball B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. Vol II. Physiology, yield, and economics. pp. 53–67. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Konings, H. 1989. Physiological and morphological differences between plants with a high NAR or a high LAR as related to environmental conditions. In: Lambers, H, Cambridge, M. L., Konings, H. & Pons, T. L. (eds. ), Causes and Consequences of Variation in Growth Rate and Productivity. pp 101–123. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Lambers, H. 1987. Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Gregory, P. J., Lake, J. V. Rose, D. A. (eds), Root Development and Functions. pp. 124–146. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lambers, H. & Posthumus, F. 1980. The effect of light intensity and relative humidity on growth rate and root respiration of Plantago lanceolata and Zea mays. J. Exp. Bot. 31: 1621–1630.

    Article  Google Scholar 

  • Larigauderie, L., Hilbert, D. W. & Oechel, W. C. 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis, Oecologia 77: 544–549.

    Article  Google Scholar 

  • Luxmoore, R. J., O’Neill, E. G., Ells, J. M. & Rogers, J. M. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric CO2. J. Environ. Qual. 15: 244–251.

    Article  CAS  Google Scholar 

  • Masterson, C. L. & Sherwood, M. T. 1978. Some effects of increased atmospheric carbon dioxide on white clover (Trifolium repens) and pea (Pisum sativum). Plant and Soil 49: 421–426.

    Article  CAS  Google Scholar 

  • Morison, J. I. L. & Gifford, R. M. 1984. Plant growth and water use with a limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Aust. J. Plant Physiol. 11: 361–374.

    Article  Google Scholar 

  • Mousseau, M. & Enoch, H. Z. 1989. Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant Cell Environm. 12: 927–934.

    Article  Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1989. Leaf and canopy responses of Lolium perenne to long-term elevated atmospheric carbon-dioxide concentration. Planta 177: 312–320.

    Article  CAS  Google Scholar 

  • Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment in the atmosphere. Physiol. Plant. 71: 77–82.

    Article  CAS  Google Scholar 

  • Norby, R. J., Luxmoore, R. J., O’Neill, E. G. & Weller, D. G. 1984. Plant responses to elevated atmospheric CO2 with emphasis on belowground processes. ORNL/TM-9426. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Norby, R. J., O’Neill, E. G., Hood, W. G. & Luxmoore, R. J. 1987. Carbon allocation, root exudation and mycorrhizal colonization. Tree Physiol. 3: 203–210.

    Article  PubMed  Google Scholar 

  • Norby, R. J., O’Neill, E. G. & Luxmoore, R. J. 1986a. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Norby, R. J., Pastor, J. & Melillo, J. M. 1986b. Carbonnitrogen interactions in CO2-enriched white oak: physiological and long-term perspectives. Tree Physiol. 2: 233– 241.

    Article  PubMed  CAS  Google Scholar 

  • Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. 1986. Effects of CO2 enrichment on growth, photosynthesis, and nutrient concentration of Alaskan tundra plant species. Can. J. Bot. 64: 2993–2998.

    Article  CAS  Google Scholar 

  • Overdieck, O., Reid, C. H. & Strain, B. R. 1988. The effects of preindustrial and future CO2 concentrations on growth, dry matter production and the C/N relationship in plants at low nutrient supply: Vigna unguiculata (cowpea), Abelmoschus esculentus (okra) and Raphanus sativus (radish). Angew. Botanik 62: 119–134.

    Google Scholar 

  • Paez, A., Hellmers, H. & Strain, B. R. 1980. CO2 effects on apical dominance in Pisum sativum. Physiol. Plant. 50: 43–46.

    Article  CAS  Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1982. Interacting effects of CO2 and nutrient concentrations. Weed Science 30: 389–394.

    CAS  Google Scholar 

  • Phillips, D. A., Newell, K. D., Hassell, S. A. & Felling, C. E. 1976. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativum L. Amer. J. Bot. 63: 356–362.

    Article  Google Scholar 

  • Poorter, H., Pot, S. & Lambers, H. 1988. The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration of Plantago major. Physiol. Plant. 73: 553–559.

    Article  CAS  Google Scholar 

  • Reddy, V. R., Acock, B. & Acock, M. C. 1989. Seasonal carbon and nitrogen accumulation in relation to net carbon dioxide exchange in a carbon dioxide-enriched soybean canopy. Agron. J. 81: 78–83.

    Article  Google Scholar 

  • Reynolds, J. F. & Thornley, J. H. M. 1982. A shoot:root partitioning model. Ann. Bot. 49: 585–597.

    Google Scholar 

  • Richardson, S. D. 1953. Studies on root growth in Acer saccharinum L. I. The relation between root growth and photosynthesis. Proc. K. Ned. Acad. Wet. C56: 185–193.

    Google Scholar 

  • Rogers, H. H., Cure, J. D., Thomas, J. F. & Smith, J. M. 1984. Influence of elevated CO2 on growth of soybean plants. Crop Sci. 24: 361–367.

    Article  Google Scholar 

  • Rowland-Bamford, A. J., Allen L. H. Jr., Baker, J. T. & Boote, K. J. 1990. Carbon dioxide effects on carbohydrate status and partitioning in rice. J. exp. Bot. 41: 1601–1608.

    Article  CAS  Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1988. Effects of carbon dioxide enrichment on the growth and morphology of Kudzu (Pueraria lobata). Weed Science 36: 28–36.

    Google Scholar 

  • Shivashankar, K. & Vlassak, K. 1978. Influence of straw and CO2 on N2-fixation and yield of field-grown soybeans. Plant and Soil 49: 259–266.

    Article  CAS  Google Scholar 

  • Sionit, N. 1983. Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere. Crop Sci. 23: 329–334.

    Article  CAS  Google Scholar 

  • Sionit, N., Strain, B. R. & Hellmers, H. 1981a. Effects of different concentrations of atmospheric CO2 on growth and yield components of wheat. J. Agric. Sci. 79: 335–339.

    Article  Google Scholar 

  • Sionit, N., Hellmers, H. & Strain, B. R. 1980. Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci. 20: 687–690.

    Article  Google Scholar 

  • Sionit, N., Hellmers, H. & Strain, B. R. 1982. Interaction of atmospheric CO2 enrichment and irradiance on plant growth. Agron. J. 74: 721–725.

    Article  Google Scholar 

  • Sionit, N., Mortensen, D. A., Strain, B. R. & Hellmers, H. 1981b. Growth response of wheat to CO2 enrichment and different levels of mineral nutrition. Agron. J. 73: 1023–1027.

    Article  Google Scholar 

  • Sionit, N., Strain, B. R., Hellmers, H., Riechers, G. H. & Jaeger, C. H. 1985. Long-term atmospheric CO2 enrichment affects the growth and development of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. For. Res. 15: 468–471.

    Article  Google Scholar 

  • Sritharan, R. & Lenz, F. 1990. The effect of CO2 concentration and water supply on photosynthesis, dry matter production and nitrate concentrations of kohlrabi (Brassica oleracea var. gongylodes L. ). Acta Horticulturae 286: 43– 55.

    Google Scholar 

  • Stulen, I., Den Hertog, J. & Jansen, C. M. 1992. The influence of atmospheric CO2 enrichment on allocation patterns of carbon and nitrogen in plants from natural vegetations. In: Govindjee, Abrol, Y. P. & Mohanty, P. (ed), Photosynthesis and Plant Productivity. in press Oxford QIBP Publishing Co. PVT. LTD, New Delhi.

    Google Scholar 

  • Thornley, J. H. M. 1972. A balanced quantitative model for root:shoot ratios in vegetative plants. Ann. Bot. 36: 431–441.

    Google Scholar 

  • Tinus, R. W. 1972. CO2 enriched atmosphere speeds growth of Ponderosa pine and blue spruce seedlings. Tree Plant. Notes 23: 12–15.

    Google Scholar 

  • Tognoni, F., Halevy, A. H. & Wittwer, S. H. 1967. Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide. Planta 72: 43–52.

    Article  CAS  Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1984. Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. Bot. 62: 2135–2139.

    Article  Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1985. Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels. Oecologia 65: 166–172.

    Article  Google Scholar 

  • Van der Werf, A., Kooijman, A, Welschen, R & Lambers, H. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol. Plant. 72: 483–491.

    Article  Google Scholar 

  • Vessey, J. K., Henry, L. T. & Raper Jr, C. D. 1990. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth. Crop Sci. 30: 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Whipps, J. M. 1985. Effect of CO2 concentration on growth, carbon distribution and loss of carbon from the roots of maize. J. Exp. Bot. 36: 644–651.

    Article  Google Scholar 

  • Whipps, J. M. 1987. Carbon loss from the roots of tomato and pea seedlings grown in soil. Plant and Soil 103: 95–100.

    Article  CAS  Google Scholar 

  • Wilson, J. B. 1988. A review of evidence on the control of shoot: root ratio, in relation to models. Ann. Bot. 61: 433– 449.

    Google Scholar 

  • Wittwer, S. H. 1986. Worldwide status and history of CO2 enrichment - an overview. In: Enoch, H. Z. & Kimball, B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. Vol I. Status and CO2 source ). pp. 3–16. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photo synthetic capacity in C3 and C4 plants. Oecologia 44: 68–74.

    Article  Google Scholar 

  • Wong, S. C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. II Non-structural carbohydrate content in cotton plants and its effect on growth. Photosynthesis Research 23: 171–180.

    Article  CAS  Google Scholar 

  • Yelle, S., Gosselin, A. & Trudel, M. J. 1987. Effect of atmospheric CO2 concentration and root-zone temperature on growth, mineral nutrition, and nitrate reductase activity of greenhouse tomato. J. Amer. Soc. Hort. Sci. 112: 1036– 1040.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Rozema H. Lambers S. C. Van de Geijn M. L. Cambridge

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stulen, I., den Hertog, J. (1993). Root growth and functioning under atmospheric CO2 enrichment. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics