Skip to main content

Biochemistry of anaerobic biodegradation of aromatic compounds

  • Chapter

Abstract

Aromatic compounds comprise the second largest group of natural products (Fig. 1); in addition a variety of xenobiotics are man-made aromatic pollutants. They are metabolized by microorganisms following two fundamentally different strategies: Under aerobic conditions, aromatic compounds are transformed by monooxygenases and dioxygenases into a few central intermediates such as catechol, protocatechuate and gentisate. These dihydroxylated compounds are suitable for an oxidative cleavage of the aromatic ring (the pertinent aerobic literature will not be covered here but see Chapter 11 by Smith). Under anoxic conditions, aromatic compounds have to be transformed by other means than by oxygenases. It is now proven that numerous low molecular weight aromatic compounds are degraded by different groups of anaerobic bacteria (early reports by Tarvin and Buswell 1934; Dutton and Evans 1967) and that the aromatic ring structures are reductively attacked, as proposed by the late W.C. Evans (Dutton and Evans 1969; Balba and Evans 1977; Evans 1977; Williams and Evans 1975; Evans and Fuchs 1988). It has to be pointed out, however, that there is no evidence for a significant anaerobic degradation of polymeric high molecular weight aromatics such as lignins, which represent probably more than half of the aromatic compounds (Hackett et al. 1977; Zeikus 1980; Young and Frazer 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeckersberg F, Bak F and Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulphate reducing bacteria. Arch. Microbiol. 156: 5–14.

    Article  CAS  Google Scholar 

  • Aftring RP and Taylor BF (1981) Aerobic and anaerobic catabolism of phthalic acid by a nitrate-respiring bacterium. Arch. Microbiol. 130: 101–104.

    Article  CAS  Google Scholar 

  • Altenschmidt U and Fuchs G (1991) Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch. Microbiol. 156: 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Altenschmidt U and Fuchs G (1992a) Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8 kbp plasmid, and cloning and sequencing of the gene. Eur. J. Biochem. 205: 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Altenschmidt U and Fuchs G (1992b) Demonstration of anaerobic toluene oxidation to benzyl alcohol and benzaldehyde in a denitrifying Pseudomonas species. J. Bacteriol. 174: 4860–4862.

    PubMed  CAS  Google Scholar 

  • Altenschmidt U, Eckerskorn C and Fuchs G (1990) Evidence that enzymes of a novel aerobic 2-aminobenzoate metabolism in denitrifying Pseudomonas are coded on a small plasmid. Eur. J. Biochem. 194: 647–653.

    Article  PubMed  CAS  Google Scholar 

  • Altenschmidt U, Oswald B and Fuchs G (1991) Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J. Bacteriol. 173: 5494–5501.

    PubMed  CAS  Google Scholar 

  • Altenschmidt U, Bokranz M and Fuchs G (1992) Novel aerobic 2-aminobenzoate metabolism. Nucleotide sequence of the plasmid carrying the gene for the flavoprotein 2-aminobenzoyl-CoA monooxygenase/reductase in a denitrifying Pseudomonas sp. Eur. J. Biochem. 207: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez PJJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57: 2981–2985.

    PubMed  CAS  Google Scholar 

  • Amerkhanova NN, Naumova RP (1979) 2,4,6-Trinitrotoluene as a source of nutrition for bacteria. Microbiologiya 47: 393–395.

    Google Scholar 

  • Angermaier L, Simon H (1983a) On nitroaryl reductase activities in several Clostridia. Hoppe-Seyler’s Z. Physiol. Chem. 364: 1653–1663.

    Article  PubMed  CAS  Google Scholar 

  • Angermaier L, Simon H (1983b) On the reduction of aliphatic and aromatic nitro compounds by Clostridia, the role of ferredoxin and its stabilization. Hoppe Seyler’s Z. Physiol. Chem. 364: 961–975.

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Vemori T, Shinke R, Nishira H (1985) Further characterization of bacterial production of anthranilic acid from aniline. Agric. Biol. Chem. 49: 1151–1158.

    Article  CAS  Google Scholar 

  • Apajalahti J, Cole J, Tiedje J (1989) Characterization of a dechlorination cofactor: an essential activator for 3-chlorobenzoate dechlorination by the bacterium DCB-1. ASM Annu. Meet. Abstr.:336.

    Google Scholar 

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic compounds. Arch. Microbiol. 130: 255–261.

    Article  CAS  Google Scholar 

  • Bak F, Widdel F (1986a) Anaerobic degradation of indolic compounds by sulphate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch. Microbiol. 146: 170–176.

    Article  CAS  Google Scholar 

  • Bak F, Widdel F (1986b) Anaerobic degradation of phenol and phenol derivatives by Desulfobacteriumphenolicum sp. nov. Arch. Microbiol 146: 177–180.

    Article  CAS  Google Scholar 

  • Bakker G (1977) Anaerobic degradation of aromatic compounds in the presence of nitrate. FEMS Microbiol. Lett. 1: 103–108.

    Article  CAS  Google Scholar 

  • Balba MT, Evans WC (1977) The methanogenic fermentation of aromatic substrates. Biochem. Soc. Trans. 5: 302–305.

    PubMed  CAS  Google Scholar 

  • Balba MT, Evans WC (1979) The methanogenic fermentation of omega-phenylalkane carboxylic acids. Biochem. Soc. Trans. 7: 403–405.

    PubMed  CAS  Google Scholar 

  • Balba MT, Evans WC (1980) The methanogenic biodegradation of catechol by a microbial consortium: evidence for the production of phenol through cis-benzenediol. Biochem. Soc. Trans. 8: 452–454.

    PubMed  CAS  Google Scholar 

  • Balba MT, Clarke NA, Evans WC (1979) The methanogenic fermentation of plant phenolics. Biochem. Soc. Trans. 7: 1115–1116.

    PubMed  CAS  Google Scholar 

  • Barik S, Brulla WJ, Bryant MP (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntropy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids. Appl. Environ. Microbiol. 50: 304–310.

    PubMed  CAS  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann. Rev. Biochem. 50: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Beatrix B, Bendrat K, Rospert S, Buckel W (1990) The biotin-dependent sodium ion pump glutaconyl-CoA decarboxylase from Fusobacterium nucleatum (subsp. nucleatum). Comparison with the glutaconyl-CoA decarboxylases from Gram-positive bacteria. Arch. Microbiol. 156: 362–369.

    Google Scholar 

  • Béchard G. Bisaillon JG, Beaudet R (1990) Degradation of phenol by a bacterial consortium under methanogenic conditions. Can. J. Microbiol. 36: 573–578.

    Article  Google Scholar 

  • Berman MH, Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic demethylation reaction for phenylmethyl ethers. Appl. Environ. Microbiol. 58: 925–931.

    PubMed  CAS  Google Scholar 

  • Berry DF, Francis AJ, Bollag J-M (1987a) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51: 43–59.

    PubMed  CAS  Google Scholar 

  • Berry DF, Madsen EL, Bollag J-M (1987b) Conversion of indole to oxindole under methanogenic conditions. App. Environ. Microbiol. 53: 180–182.

    CAS  Google Scholar 

  • Bisaillon J-G, Lépine F, Beaudet R (1991a) Study of the methanogenic degradation of phenol via carboxylation to benzoate. Can. J. Microbiol. 37: 573–576.

    Article  CAS  Google Scholar 

  • Bisaillon J-G, Lépine F, Beaudet R, Sylvestre M (1991b) Carboxylation of o-cresol by an anaerobic consortium under methanogenic conditions. Appl. Environ. Microbiol. 57: 2131–2134.

    PubMed  CAS  Google Scholar 

  • Blackwood AC, Hang YD, Robern H, Mathur DK (1970) Reductive pathway for the degradation of phloroglucinol by a pseudomonad. Bacteriol. Proc. 70: 124.

    Google Scholar 

  • Blake CK, Hegeman GD (1987) Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN 1. J. Bacteriol. 169; 4878–4883.

    PubMed  CAS  Google Scholar 

  • Blakley ER (1978) The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate. Can. J. Microbiol. 24:847–855.

    Article  PubMed  CAS  Google Scholar 

  • Booth AN, Williams RT (1963a) Dehydroxylation of caffeic acid by rat and rabbit caecal contents and sheep rumen liquor. Nature 198: 684–685.

    Article  PubMed  CAS  Google Scholar 

  • Booth AN, Williams RT (1963b) Dehydroxylation of catechol acids by intestinal contents. Biochem. J. 88: 66P-67P.

    Google Scholar 

  • Bossert ID, Young LY (1976) Anaerobic oxidation of p-cresol by a denitrifying bacterium. Appl. Environ. Microbiol. 52: 1117–1122.

    Google Scholar 

  • Bossert ID, Whited G, Gibson DT, Young LY (1989) Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium. J. Bacteriol. 171:2956–2962.

    PubMed  CAS  Google Scholar 

  • Braun H, Schmidtchen FP, Schneider A, Simon H (1991) Microbial reduction of N-allylhydroxylamines to N-allylamines using Clostridia. Tetrahedron 47: 3329–3334.

    Article  CAS  Google Scholar 

  • Braun K, Gibson DT (1984) Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl. Environ. Microbiol. 48: 102–107.

    PubMed  CAS  Google Scholar 

  • Brune A, Schink B (1989) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalysed by cell extracts of Pelobacter acidigallici. J. Bacteriol. 172: 1070–1076.

    Google Scholar 

  • Brune A, Schink B (1992) Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157:417–424.

    Article  CAS  Google Scholar 

  • Brune A, Schnell S, Schink B (1992) Sequential transhydroxylation coverting hydroxyhydroquinone to phloroglucinol in the strictly anaerobic, fermenting bacterium Pelobacter massiliensis. Appl. Environm. Microbiol., 58: 1861–1868.

    CAS  Google Scholar 

  • Bryant C, DeLuca (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J. Biol. Chem. 266: 4119–4125.

    PubMed  CAS  Google Scholar 

  • Buder R, Fuchs G (1989) 2-Aminobenzoyl-CoA monoxygenase/reductase, a novel type of flavoenzyme. Purification and some properties of the enzyme. Eur. J. Biochem. 185: 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Buder R, Ziegler K, Fuchs G, Langkau B, Ghisla S (1989) 2-Aminobenzoyl-CoA monooxygenase/ reductase, a novel type of flavoenzyme. Studies on the stoichiometry and the course of the reaction. Eur. J. Biochem. 185: 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Fewson CA (1989) Purification and characterization of benzaldehyde dehydrogenase I from Acinetobacter calcoaceticus. Biochem. J. 263: 913–919.

    PubMed  CAS  Google Scholar 

  • Chalmers RM, Scott AJ, Fewson CA (1990) Purification of the benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid pWW53 of Pseudomonas putida MT53 and their preliminary comparison with benzyl alcohol dehydrogenase and benzaldehyde dehydrogenases I and II from Acinetobacter calcoaceticus. J. Gen. Microbiol. 136: 637–643.

    Article  CAS  Google Scholar 

  • Chalmers RM, Keen JN, Fewson CA (1991) Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. Biochem. J. 273: 99–107.

    PubMed  CAS  Google Scholar 

  • Clark FM, Fina LR (1952) The anaerobic decomposition of benzoic acid during methane fermentation. Arch. Biochem. 36: 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Cocaign M, Wilberg E, Lindley ND (1991) Sequential demethoxylation reactions during methylotrophic growth of methoxylated aromatic substrates with Eubacterium limosum. Arch. Microbiol. 155: 496–499.

    Article  CAS  Google Scholar 

  • D’Ari L, Barker HA (1985) p-Cresol formation by cell-free extracts of Clostridum difficile. Arch. Microbiol. 143: 311–312.

    Article  PubMed  Google Scholar 

  • Dangel W, Tschech A, Fuchs G (1988) Anaerobic metabolism of cyclohexanol by denitrifying bacteria. Arch. Microbiol. 150: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Dangel W, Tschech A, Fuchs G (1989) Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species. Arch. Microbiol. 152: 273–279.

    Article  CAS  Google Scholar 

  • Dangel W, Brackmann R, Lack A, Magdy M, Koch J, Oswald B, Seyfried B, Tschech A, Fuchs G (1991) Differential expression of enzymes initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch. Microbiol. 155: 256–262.

    Article  CAS  Google Scholar 

  • Daniel SL, Wu Z, Drake HL (1988) Growth of thermophilic acetogenic bacteria on methoxylated aromatic acids. FEMS Microbiol. Lett. 52: 25–28.

    Article  CAS  Google Scholar 

  • den Tweel WJJv, Kok JB, de Bont JAM (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans. Appl. Environ. Microbiol. 53: 810–815.

    PubMed  Google Scholar 

  • DeWeerd KA, Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile tiedjei”. Appl. Environ. Microbiol. 56: 2999–3005.

    Google Scholar 

  • DeWeerd KA, Concannon F, Suflita JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulphur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57: 1929–1934.

    Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, J., Suflita M (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30.

    Google Scholar 

  • DeWeerd KA, Saxena A, Nagle DP, Suflita JM (1988) Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl. Environ. Microbiol. 54: 1237–1242.

    Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarboxylase and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51: 320–340.

    PubMed  CAS  Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium strain DCB-1. Arch. Microbiol. 153: 264–266.

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J, Tiedje TM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105.

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J, Tiedje JM (1991a) Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate. Arch. Microbiol. 156: 356–361.

    Article  CAS  Google Scholar 

  • Dolfing J, Tiedje JM (1991b) Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Appl. Environ. Microbiol. 57: 820–824.

    PubMed  CAS  Google Scholar 

  • Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154: 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Dörner C, Schink B (1991) Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156: 302–306.

    Article  Google Scholar 

  • Dutton PL, Evans WC (1967) Dissimilation of aromatic substrates by Rhodopseudomonas palustris. Biochem. J. 104: 30–31.

    Google Scholar 

  • Dutton PL, Evans WC (1968) The photometabolism of benzoic acid by Rhodopseudomonas palustris: a new pathway of aromatic ring metabolism. Biochem. J. 109: 5P.

    PubMed  CAS  Google Scholar 

  • Dutton PL, Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris: a new reductive method of aromatic ring metabolism. Biochem. J. 113: 525–536.

    PubMed  CAS  Google Scholar 

  • Dutton PL, Evans WC (1978) Metabolism of aromatic compounds by Rhodospirillaceae. In: RK Clayton and WR Sistrom (eds) The Photosynthetic bacteria (pp 719–726). Plenum Publishing Corp., New York.

    Google Scholar 

  • Elder DJE, Morgan P, Kelly DJ (1992) Anaerobic degradation of trans-cinnamate and omega-phenylalkane carboxylic acids by the photosynthetic bacterium Rhodopseudomonas palustris: evidence for a β-oxidation mechanism. Arch. Microbiol. 157: 148–154.

    PubMed  CAS  Google Scholar 

  • Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 107: 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Eisner A, Löffler F, Miyashita K, Müller R, Lingens F (1991a) Resolution of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3 into three components. Appl. Environ. Microbiol. 57: 324–326.

    Google Scholar 

  • Eisner A, Müller R, Lingens F (1991b) Separate cloning and expression analysis of two protein components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. C8S3. J. Gen. Microbiol. 137: 477–481.

    Article  Google Scholar 

  • Evans PJ, Ling W, Goldschmidt B, Ritter ED, Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58: 496–501.

    PubMed  CAS  Google Scholar 

  • Evans PJ, Mang DT, Kim KS, Young LY (1991a) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139–1145.

    PubMed  CAS  Google Scholar 

  • Evans PJ, Mang DT, Young LY (1991b) Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl. Environ. Microbiol. 57: 450–454.

    PubMed  CAS  Google Scholar 

  • Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270: 17–22.

    Article  CAS  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289–317.

    Article  CAS  Google Scholar 

  • Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107: 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol. Rev. 54: 85–110.

    Article  CAS  Google Scholar 

  • Fina LR, Fiskin AM (1960) The anaerobic decomposition of benzoic acid during methane fermentation. II. Fate of carbons one and seven. Arch. Biochem. Biophys. 91:163–165.

    Article  PubMed  CAS  Google Scholar 

  • Fina LR, Bridges RL, Coblentz TH, Roberts FF (1978) The anaerobic decomposition of benzoic acid during methane fermentation. III. The fate of carbon four and the identification of propanoic acid. Arch. Microbiol. 118: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Fogg GC, Gibson J (1990) 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris. ASM Annu. Meet. Abstr: 242.

    Google Scholar 

  • Frazer AC, Young LY (1985) A Gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Environ. Microbiol. 49: 1345–1347.

    PubMed  CAS  Google Scholar 

  • Frazer AC, Young LY (1986) Anaerobic C1 metabolism of the O-methyl-14C-labeled substituent of vanillate. Appl. Environ. Microbiol. 51: 84–87.

    PubMed  CAS  Google Scholar 

  • Gallert C, Knoll G, Winter J (1991) Anaerobic carboxylation of phenol to benzoate: use of deuterated phenols revealed carboxylation exclusively in the C4-position. Appl. Microbiol. Biotechnol. 36:124–129.

    Article  CAS  Google Scholar 

  • Geissler JF, Harwood CS, Gibson J (1988) Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J. Bacteriol. 170: 1709–1714.

    PubMed  CAS  Google Scholar 

  • Genthner BRS, Bryant MP (1987) Additional characteristics of one-carbon compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl. Environ. Microbiol. 53: 471–476.

    Google Scholar 

  • Genthner BRS, Townsend GT, Chapman PJ (1990) Effect of fluorinated analogues of phenol and hydroxybenzoates on the anaerobic transformation of phenol to benzoate. Biodegradation 1: 65–74.

    Article  CAS  Google Scholar 

  • Genthner BRS, Townsend GT, Chapman PJ (1991) para-Hydroxybenzoate as an intermediate in the anaerobic transformation of phenol to benzoate. FEMS Microbiol. Lett. 78: 265–270.

    Article  CAS  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker Inc., New York.

    Google Scholar 

  • Gibson KJ, Gibson J (1992) Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl. Environm. Microbiol. 58: 696–698.

    CAS  Google Scholar 

  • Glöckler R, Tschech A, Fuchs G (1989) Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA in a denitrifying, phenol degrading Pseudomonas species. FEBS Lett. 251: 237–240.

    Article  PubMed  Google Scholar 

  • Gorby YA, Lovley DR (1991) Electron transport in the dissimilatory iron reducer, GS-15. Appl. Environ. Microbiol. 57: 867–870.

    PubMed  CAS  Google Scholar 

  • Gorny N, Wahl G, Brune A, Schink, B (1992) A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. Arch. Microbiol. 158: 48–53.

    Article  PubMed  CAS  Google Scholar 

  • Grbic-Galic (1986) O-Demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J. Appl. Bacteriol. 61: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Grbic-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260.

    PubMed  CAS  Google Scholar 

  • Gross GG (1972) Formation and reduction of intermediate acyladenylate by aryl-aldehyde: NADP oxidoreductase from Neurospora crassa. Eur. J. Biochem. 31: 585–592.

    Article  PubMed  CAS  Google Scholar 

  • Guyer M, Hegeman G (1969) Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J. Bacteriol. 99: 906–907.

    PubMed  CAS  Google Scholar 

  • Hackett WF, Connors WJ, Kirk TK, Zeikus JG (1977) Microbial decomposition of synthetic 14Clabeled lignins in nature: lignin biodegradation in a variety of natural materials. Appl. Environ. Microbiol. 33: 43–51.

    PubMed  CAS  Google Scholar 

  • Haddock JD, Ferry JG (1989) Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41. J. Biol. Chem. 264: 4423–4427.

    PubMed  CAS  Google Scholar 

  • Häggblom MM, Nohynek LJ, Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54: 3043–3052.

    PubMed  Google Scholar 

  • Hansen B, Bokranz M, Schönheit P, Kröger A (1988) ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16. Arch. Microbiol. 150: 447–451.

    Article  CAS  Google Scholar 

  • Harman WD, Taube H (1988) The selective hydrogenation of benzene to cyclohexene on pentaamineosmium(II). J. Am. Chem. Soc. 110: 7906–7907.

    Article  CAS  Google Scholar 

  • Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J. Bacteriol. 165: 504–509.

    PubMed  CAS  Google Scholar 

  • Harwood CS, Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 54: 712–717.

    PubMed  CAS  Google Scholar 

  • Hegeman G (1988) Anaerobic growth of bacteria on benzoate under denitrifying conditions. In: SR Hagedorn RS Hanson and DA Kunz (eds) Microbial Metabolism and the Carbon Cycle (pp 181–190). Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  • Heising S, Brune A, Schink, B (1991) Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium. FEMS Microbiol. Letters 84: 267–272.

    Article  CAS  Google Scholar 

  • Hopper DJ (1978) Incorporation of [18O]water in the formation of p-hydroxybenzyl alcohol by the p-cresol methylhydroxylase from Pseudomonas putida. Biochem. J. 175: 345–347.

    PubMed  CAS  Google Scholar 

  • Hopper DJ (1988) Properties of p-cresol methylhydroxylases. In: SR Hagedorn RS Hanson and DA Kunz (eds) Microbial Metabolism and the Carbon Cycle (pp 247–258). Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  • Hopper DJ, Bossert ID, Rhodes-Roberts ME (1991) p-Cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol. J. Bacteriol. 173: 1298–1301.

    PubMed  CAS  Google Scholar 

  • Hsu T, Daniel SL, Lux MF, Drake HL (1990a) Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. bacteriol. 172: 212–217.

    PubMed  CAS  Google Scholar 

  • Hsu T, Lux MF, Drake HL (1990b) Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoGceticum. J. Bacteriol. 172: 5901–5907.

    PubMed  CAS  Google Scholar 

  • Hutber GN, Ribbons DW (1983) Involvement of coenzyme A esters in metabolism of benzoate and cyclohexanecarboxylate by Rhodopseudomonas palustris. J. Gen. Microbiol. 129: 2413–2420.

    CAS  Google Scholar 

  • Hutchins SR (1991) Biodegradation of monoaromatic hydrocarbons by aquifer micro-organisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403–2407.

    PubMed  CAS  Google Scholar 

  • Kaiser JP, Hanselmann KW (1982) Aromatic chemicals through anaerobic microbial conversion of lignin monomers. Experientia 38: 167–175.

    Article  CAS  Google Scholar 

  • Karapet’yants MK, Karapet’yants ML (1970) Thermodynamic Constants of Inorganic and Organic Compounds. Ann Arbor Humphrey Science Publishers, Ann Arbor.

    Google Scholar 

  • Keith CL, Bridges RL, Fina LR, Iverson KL, Cloran JA (1978) The anaerobic decomposition of benzoic acid during methane fermentation. IV. Dearomatization of the ring and volatile fatty acids formed on ring rupture. Arch. Microbiol. 118: 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Kerscher L, Oesterhelt D (1982) Pyruvate: ferredoxin oxidoreductase — new findings on an ancient enzyme. TIBS 7: 371–374.

    CAS  Google Scholar 

  • Kim M-K, Harwood CS (1991) Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 83: 199–204.

    CAS  Google Scholar 

  • Kinouchi T, Ohnishi Y (1983) Purification and characterization of 1-nitropyrene nitroreductase from Bacteroides fragilis. Appl. Environ. Microbiol. 46: 596–604.

    PubMed  CAS  Google Scholar 

  • Kluge C, Tschech A, Fuchs G (1990) Anaerobic metabolism of resorcylic acids (m-dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium. Arch. Microbiol. 155: 68–74.

    Article  CAS  Google Scholar 

  • Knoll G, Winter J (1987) Anaerobic degradation of phenol in sewage sludge. Benzoate formation of phenol and CO2 in the presence of hydrogen. Appl. Microbiol. Biotechnol. 25: 384–391.

    Article  CAS  Google Scholar 

  • Knoll G, Winter J (1989) Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl. Microbiol. Biotechnol. 30: 318–324.

    Article  CAS  Google Scholar 

  • Kobayashi T, Hashinuga T, Mikami E, Suschi T (1989) Methanogenic degradation of phenol and benzoate in acclimated sludges. Water Sci. Technol. 21: 55–65.

    CAS  Google Scholar 

  • Koch J, Fuchs G (1992) Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur. J. Biochem. 205: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Kreikenbohm R, Pfennig N (1985) Anaerobic degradation of 3,4,5-trimethoxy-benzoate by a defined mixed culture of Acetobacterium woodii, Pelobacter acidigallici, and Desulfobacter postgatei. FEMS Microbiol. Ecology 31: 29–38.

    Article  CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. bacteriol. 35: 454–456.

    Article  CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8–14.

    Article  CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1988) Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. J. Bacteriol. 170: 2472–2479.

    PubMed  CAS  Google Scholar 

  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP (1987) Metabolism of gállate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169: 1886–1890.

    PubMed  CAS  Google Scholar 

  • Lack A, Fuchs G (1992) Carboxylation of phenylphosphate by “phenol carboxylase”, an enzyme system of anaerobic phenol metabolism. J. Bacteriol. 174: 3629–3636.

    PubMed  CAS  Google Scholar 

  • Lack A, Tommasi I, Aresta M, Fuchs G (1991) Catalytic properties of phenol carboxylase. In vitro study of CO2: 4-hydroxybenzoate isotope exchange reaction. Eur. J. Biochem. 197: 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Langkau B, Ghisla S, Buder R, Fuchs G (1990) 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Identification of the reaction products. Eur. J. Biochem. 191: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305–315.

    PubMed  CAS  Google Scholar 

  • Lenke H (1990) Mikrobieller Abbau von Nitrophenolen: 2,4-Dinitrophenole und 2,4,6-Trinitrophenole. Ph.D. thesis, Universität Stuttgart, Germany.

    Google Scholar 

  • Lindmark DG, Müller M (1976) Antitrichomonad action, mutagenecity, and reduction of metronidazole and other nitroimidazoles. Antimicr. Agents Chemother. 10: 476–482.

    Article  CAS  Google Scholar 

  • Lochmeyer C, Fuchs G (1990) NADP+-specific 2-oxoglutarate dehydrogenase in denitrifying Pseudomonas species. Arch. Microbiol. 153: 226–229.

    Article  CAS  Google Scholar 

  • Lochmeyer C, Koch J, Fuchs G (1992) Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-CoA and cyclohex-l-enecarboxyl-CoA in a denitrifying bacterium. J. Bacteriol. 174: 3621–3628.

    PubMed  CAS  Google Scholar 

  • Löffler F, Müller R (1991) Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalysed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEBS Lett. 290: 224–226.

    Article  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259–287.

    PubMed  CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864.

    PubMed  CAS  Google Scholar 

  • Lux MF, Keith E, Hsu T, Drake HL (1990) Biotransformations of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol. Lett. 67: 73–78.

    Article  CAS  Google Scholar 

  • Madsen EL, Bollag JM (1989) Pathway of indole metabolism by a denitrifying microbial community. Arch. Microbiol. 151: 71–76.

    Article  CAS  Google Scholar 

  • Martinez-Bianco H, Reglero A, Rodriguez-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J. Biol. Chem. 265: 7084–7090.

    Google Scholar 

  • Masai E, Katayama Y, Nishikawa S, Yamasaki M, Morohoshi N, Haraguchi T (1989) Detection and localization of a new enzyme catalyzing β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett. 249: 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Masai E, Katayama Y, Kawai S, Nishikawa S, Yamasaki M, Morohoshi N (1991) Cloning and sequencing of the gene for a Pseudomonas paucimobilis enzyme that cleaves β-aryl ether. J. Bacteriol. 173: 7950–7955.

    PubMed  CAS  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1978) Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35: 945–948.

    PubMed  CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54:1182–1187.

    PubMed  CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198.

    PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1990a) Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. J. Bacteriol. 172: 2065–2070.

    PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1990b) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1991) Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei. Arch. Microbiol. 1991: 1–8.

    Google Scholar 

  • Morris JG (1984) Changes in oxygen tension and the microbial metabolism of organic carbon. In: Aspects of Microbial Metabolism and Ecology (pp 59–96). Spec. Publ. Soc. Gen. Microbiol., London.

    Google Scholar 

  • Mountfort DO (1990) Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium. J. Bacteriol. 172: 3690–3694.

    PubMed  CAS  Google Scholar 

  • Mountfort DO, Asher RA (1986) Isolation from a methanogenic ferulate degrading consortium of an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids. Arch. Microbiol. 144:55–61.

    Article  CAS  Google Scholar 

  • Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswelli gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacteriol. 34: 216–217.

    Article  Google Scholar 

  • Naumova RP, Selivanovskaya SY, Cherepneva IE (1989) Conversion of 2,4,6-trinitrotoluene under conditions of oxygen and nitrate respiration of Pseudomonas fluorescens. Appl. Biochem. Microbiol. 24: 409–413.

    Google Scholar 

  • Nozawa T, Maruyama Y (1988a) Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J. Bacteriol. 170: 5778–5784.

    PubMed  CAS  Google Scholar 

  • Nozawa T, Maruyama Y (1988b) Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates. J. Bacteriol. 170: 2501–2505.

    PubMed  CAS  Google Scholar 

  • O’Brien RW, Morris JG (1971) The ferredoxin-dependent reduction of chloramphenicol by Clostridium acetobutylicum. J. Gen. Microbiol. 67: 265–271.

    Article  PubMed  Google Scholar 

  • O’Connor OA, Young LY (1990) Metabolism of phenol by a denitrifying pure culture. ASM Annu. Meet. Abstr: 295.

    Google Scholar 

  • Oltmanns RH, Müller R, Otto MK, Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl. Environ. Microbiol. 55: 2499–2504.

    PubMed  CAS  Google Scholar 

  • Oren A, Gurevich P, Henis Y (1991) Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 57: 3367–3370.

    PubMed  CAS  Google Scholar 

  • Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 34: 232–233.

    PubMed  CAS  Google Scholar 

  • Patel TR, Hameed N, Martin AM (1990) Initial steps of phloroglucinol metabolism in Penicillium simplicissimum. Arch. Microbiol. 153: 438–443.

    Article  CAS  Google Scholar 

  • Patel TR, Jure KG, Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus. Appl. Environ. Microbiol. 42: 1010–1017.

    PubMed  CAS  Google Scholar 

  • Perez-Silva G, Rodriguez D, Perez-Silva J (1966) Dehydroxylation of caffeic acid by a bacterium isolated from rat faeces. Nature 212: 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Raffi F, Franklin W, Heflich RH, Cerniglia CE (1991) Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 57: 962–968.

    Google Scholar 

  • Ramanand K, Suflita JM (1991) Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulfate-reducing bacterial enrichment. Appl. Environ. Microbiol. 57: 1689–1695.

    PubMed  CAS  Google Scholar 

  • Reineke W, Knackmuss H-J (1988) Microbial degradation of haloaromatics. Ann. Rev. Microbiol. 42: 263–287.

    Article  CAS  Google Scholar 

  • Roberts DJ, Fedorak PM, Hrudey SE (1987) Comparison of the fates of the methyl carbons of m-cresol and p-cresol in methanogenic consortia. Can. J. Microbiol. 33: 335–338.

    Article  CAS  Google Scholar 

  • Roberts J, Fedorak PM, Hrudey SE (1990) CO2 incorporation and 4-hydroxy-2-methylbenzoic acid formation during anaeorobic metabolism of m-cresol by a methanogenic consortium. Appl. Environ. Microbiol. 56: 472–478.

    PubMed  CAS  Google Scholar 

  • Rudolphi A, Tschech A, Fuchs G (1991) Anaerobic degradation of cresols by denitrifying bacteria. Arch. Microbiol. 155: 238–248.

    Article  PubMed  CAS  Google Scholar 

  • Samain E, Albagnac G, Dubourgier H-C (1986) Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici. Arch. Microbiol. 144: 242–244.

    Article  CAS  Google Scholar 

  • Schackmann A, Müller R (1991) Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34: 809–813.

    Article  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145: 162–172.

    Article  CAS  Google Scholar 

  • Scheline RR (1973) Metabolism of foreign compounds by gastro-intestinal microorganisms. Microbiol. Rev. 25: 451–523.

    CAS  Google Scholar 

  • Scheline RR, Williams RT, Wit JG (1960) Biological dehydroxylation. Nature 188: 849–850.

    Article  PubMed  CAS  Google Scholar 

  • Schennen UK, Braun K, Knackmuss H-J (1985) Anaerobic degradation of 2-fluoro-benzoate by benzoate-degrading denitrifying bacteria. J. Bacteriol. 161: 321–325.

    PubMed  CAS  Google Scholar 

  • Schink B (1992) Syntrophism among prokaryotes. In: A Balows et al. (eds) The Prokaryotes, 2nd edition (pp 276–299). Springer-Verlag, Heidelberg.

    Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195–201.

    Article  CAS  Google Scholar 

  • Schink B, Tschech A (1988) Fermentative degradation of aromatic compounds. In: SR Hagedorn RS Hanson and DA Kunz (eds) Microbial Metabolism and the Carbon Cycle (pp 213–226). Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  • Schink B, Brune A, Schnell, S (1992) Anaerobic degradation of aromatic compounds. In: G Winkelmann (ed) Microbial Degradation of Natural Products (pp 219–242). Verlag Chemie, Weinheim.

    Google Scholar 

  • Schlömann M, Fischer P, Schmidt E, Knackmuss H J (1990) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J. Bacteriol. 172: 5119–5129.

    PubMed  Google Scholar 

  • Schnell S, Schink B (1991) Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch. Microbiol. 155: 183–190.

    Article  CAS  Google Scholar 

  • Schnell S, Schink B (1992) Anaerobic degradation of 3-aminobenzoate by a newly isolated sulfate reducer and a methanogenic enrichment culture. Arch. Microbiol, submitted.

    Google Scholar 

  • Schnell S, Bak F, Pfennig N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152: 556–563.

    Article  PubMed  CAS  Google Scholar 

  • Schnell S, Brune A, Schink B (1991) Degradation of hydroxyhydroquinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov., Arch. Microbiol. 155: 511–516.

    Article  CAS  Google Scholar 

  • Schocher RJ, Seyfried B, Vazquez F, Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch. Microbiol. 157: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Scholten J, Chang K, Babitt P, Charest H, Sylvestre M, Dunaway-Mariano D (1991) Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science 253: 182–185.

    Article  PubMed  CAS  Google Scholar 

  • Sembiring T, Winter J (1989a) Anaerobic degradation of phenylacetic acid by mixed and pure cultures. Appl. Microbiol. Biotechnol. 31: 84–88.

    CAS  Google Scholar 

  • Sembiring T, Winter J (1989b) Anaerobic degradation of ortho-phenylphenol by mixed and pure cultures. Appl. Microbiol. Biotechnol. 31: 89–92.

    CAS  Google Scholar 

  • Seyfried B (1989) Anaerober Abbau von Phenylacetat über alpha-Oxidation durch denitrifizierende Bakterien. Ph.D. thesis, Universität Ulm, Germany.

    Google Scholar 

  • Seyfried B, Tschech A, Fuchs G (1991) Anaerobic degradation of phenylacetate and 4-hydroxyphenylacetate by denitrifying bacteria. Arch. Microbiol. 155: 249–255.

    Article  CAS  Google Scholar 

  • Shaw JP, Harayama S (1990) Purification and characterization of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Eur. J. Biochem. 191:705–714.

    Article  PubMed  CAS  Google Scholar 

  • Shlomi EK, Lankhorst A, Prins RA (1978) Methanogenic fermentation of benzoate in an enrichment culture. Microbial Ecol. 4: 249–261.

    Article  CAS  Google Scholar 

  • Sleat R, Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds. J. Appl. Bacteriol. 57: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Smolenski WJ, Suflita JM (1987) Biodegradation of cresol isomers in anoxic aquifers. Appl. Environ. Microbiol. 53: 710–716.

    PubMed  CAS  Google Scholar 

  • Stevens TO, Tiedje JM (1988) Carbon dioxide fixation and mixotrophic metabolism by strain DCB-1, a dehalogenating anaerobic bacterium. Appl. Environ. Microbiol. 54: 2944–2948.

    PubMed  CAS  Google Scholar 

  • Stevens TO, Linkfield TG, Tiedje JM (1988) Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl. Environ. Microbiol. 54: 2938–2943.

    PubMed  CAS  Google Scholar 

  • Stouthamer AH (1988) Bioenergetics and yields with electron acceptors other than oxygen. In: LE Erickson and D Yee-Chak Fung (eds) Handbook on Anaerobic Fermentations (pp 345–437). Marcel Dekker Inc., New York.

    Google Scholar 

  • Stull DR, Westrum EF, Sinke GC (1969) The Chemical Thermodynamics of Organic Compounds. John Wiley and Sons Inc., New York.

    Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov., Arch. Microbiol. 147: 163–168.

    Article  CAS  Google Scholar 

  • Szewzyk U, Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Arch. Microbiol. 151: 541–545.

    Article  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Schink B (1985) Methanogenic degradation of hydroquinone and catechol via reductive dehydroxylation to phenol. FEMS Microbiol. Ecol. 31: 79–87.

    Article  CAS  Google Scholar 

  • Tarvin D, Buswell AM (1934) The methane fermentation of organic acids and carbohydrates, J. Amer. Chem. Soc. 56: 1751–1755.

    Article  CAS  Google Scholar 

  • Taylor BF (1983) Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by Pseudomonas sp. strain PN-1. Appl. Environ. Microbiol. 46: 1286–1292.

    PubMed  CAS  Google Scholar 

  • Taylor BF, Ribbons DW (1983) Bacterial decarboxylation of o-phthalic acids. Appl. Environ. Microbiol. 46: 1276–1281.

    PubMed  CAS  Google Scholar 

  • Taylor BF, Campbell WL, Chinoy I (1970) Anaerobic degradation of the benzene nucleus by a facultatively anaerobic microorganism. J. Bacteriol. 102: 430–437.

    PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180.

    PubMed  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43: 43–67.

    Article  PubMed  CAS  Google Scholar 

  • Tiedje JM, Boyd SA, Fathepure BZ (1987) Anaerobic degradation of chlorinated aromatic hydrocarbons. Dev. Indust. Microbiol. 27: 117–127.

    CAS  Google Scholar 

  • Tschech A (1989) Anaerober Abbau von aromatischen Verbindungen. Forum Mikrobiologie 5: 251–264.

    Google Scholar 

  • Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch. Microbiol. 148: 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch. Microbiol. 152: 594–599.

    Article  CAS  Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137: 163–167.

    Article  CAS  Google Scholar 

  • Tschech A, Schink B (1985) Fermentative degradation of resorcinol and resorcylic acids. Arch. Microbiol. 143: 52–59.

    Article  CAS  Google Scholar 

  • Tschech A, Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophiccocultures. Arch. Microbiol. 145: 396–402.

    Article  CAS  Google Scholar 

  • Tschech A, Schink B (1988) Methanogenic degradation of anthranilate (2-aminobenzoate). System. Appl. Microbiol. 11: 9–12.

    Article  CAS  Google Scholar 

  • Tsuchiya T, Yamaha T (1984) Reductive dechlorination of 1,2,4-trichlorobenzene by Staphylococcus epidermidis isolated from intestinal contents of rats. Agric. Biol. Chem. 48: 1545–1550.

    Article  CAS  Google Scholar 

  • Villanueva JR (1964) The purification of a nitroreductase from Nocardia V. J. Biol. Chem. 239: 773–776.

    PubMed  CAS  Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202.

    PubMed  CAS  Google Scholar 

  • Ward LA, Johnson KA, Robinson JM, Yokoyama MT (1987) Isolation from swine feces of a bacterium which decarboxylates-p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). Appl. Environ. Microbiol. 53: 189–192.

    PubMed  CAS  Google Scholar 

  • Whittle PJ, Lunt DO, Evans WC (1976) Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem. Soc. Trans. 4: 490–491.

    PubMed  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: AJB Zehnder (eds) Biology of Anaerobic Microorganisms (pp 469–586). John Wiley and Sons Inc., London.

    Google Scholar 

  • Williams RJ, Evans WC (1975) The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway. Biochem. J. 14-: 1–10.

    Article  Google Scholar 

  • Wu Z, Daniel SL, Drake HL (1988) Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J. Bacteriol. 170: 5747–5750.

    PubMed  CAS  Google Scholar 

  • Young LY (1984) Anaerobic degradation of aromatic compounds. In: DT Gibson (eds) Microbial Degradation of Organic Compounds (pp 487–523). Marcel Dekker Inc., New York.

    Google Scholar 

  • Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic ecosystems. Geomicrobiol. J. 5: 261–293.

    Article  CAS  Google Scholar 

  • Young LY, Rivera MD (1985) Methanogenic degradation of four phenolic compounds. Water Res. 19: 1325–1332.

    Article  CAS  Google Scholar 

  • Zeikus JG (1980) Fate of lignin and related aromatics in anaerobic environments. In: T Kirk, T Higushi and HM Chung (eds) Lignin biodegradation: Microbiology, Chemistry and Potential Applications (pp 101–110). CRC Press, Boca Raton.

    Google Scholar 

  • Zellner G, Kneifel H, Winter J (1990) Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. Appl. Environ. Microbiol. 56: 2228–2233.

    PubMed  CAS  Google Scholar 

  • Zenk MH, Ulbrich B, Brusse J, Stöckigt J (1980) Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thioesters using a bacterial system. Anal. Biochem. 101: 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Morgan TV, Wiegel J (1990) Conversion of 13C-1 phenol to 13C-4 benzoate, an intermediate step in the anaerobic degradation of chlorophenols. FEMS Microbiol. Lett. 67: 63–66.

    Article  CAS  Google Scholar 

  • Ziegler K, Braun K, Böckler A, Fuchs G (1987) Studies on the anaerobic degradation of benzoic acid and 2-aminobenzoic acid by a denitrifying Pseudomonas strain. Arch. Microbiol. 149: 62–69.

    Article  Google Scholar 

  • Ziegler K, Buder R, Winter J, Fuchs G (1989) Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch. Microbiol. 151: 171–176.

    Article  CAS  Google Scholar 

  • Zucker M, Nason A (1955) Nitroaryl reductase from Neurospora crassa. Methods in Enzymology 2: 406–411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fuchs, G. et al. (1994). Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics