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0.1 Introd uction 

The Riemann boundary value problem is referred to as the Riemann-Hilbert problem, the 

Hilbert problem and also the problem of the conjugation of analytic functions. It consisb 
of finding II {unction <Io (z} analytic everywhere on the complex plane except on the points 

of the given contour r , satisfying the boundary condition 

(0.1) 

where <IoS(t) are the limit values of the unknow n funct ion t el), aud G(I),g(t) are given 

fu nctions. 

The formulation of the problem is more general than that of problem (0.1) , and belongs 

to Riemann (I, p. 171), and the first invest igation of problem (0.1) was carried out by 

Hilbert ( I ) in 1904. Using certain additional restrictions Hilbert red uced t he problem (0.1) 

to a Fredholm integral equation . After this (apparently on Hilbert 's initiative), in 1907 

Haseman (I) carried out an anll.logou, investigation of II. problem where the condition of 

conjugation of t he limit values 4>ci {l) of the analytic function <Ioci{:) was replaced by a more 

general one, 

(0.2) 

where a(t) is II diffeomorphism (shi ft) preserviug the o rientation of a dosed contour r onto 

itseJr. Hi5lorically, the paper by lIa.seman (I) WIUI the fi rst in which the boundary value 

problem with a shift (or a displacement ) was considered for analytic fu nctions. 

The classical theory of singular integral equations (S IE) and boundary value problems 

for analytic fun ctions (SPAF), at the source of which are to be found the names of Hilbert 

and Poine&rt" have been completed mainly by Soviet mathematicians. T he most active 

founders of the theory, Muskhelishvili (I) and Gakhov (2), have summed up this period 

in t heir well-known monographs. These Illonographs also show that the theory hu been 

mainly applied to problems of the theory of elasticity. 

The successful development of the theory of SIE and DPAF naturally stimulated the 

study of singular integral equatioll~ wiLh sh ift (S IES) aud boundary value problems for 

analytic functions with shift (SPAf'S). The investigation of SPAFS was, for the first time, 

yielding fr uit. The papers by KvcselaviL (I) - (4) ( 19~6-1948) were fundamental in thi, 

direction. In these papers, Kveselava, ill particular, proved that the solvability picture of 
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problem (0.2) was the same u that of problem (0.1). Incidentally, later on Mandzhavidze 

and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0.2) to 

problem (0.1) with the help of confo rmal mappings. Apparenlly, the first paper in which 

SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that 

the equation 

(0.3) 

where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)( !) "" 

(".i)- I fr(T - t )-lrp(T)dT, W is the shift operator (WrpHt ) = rp{a(t», in the case 01 = 

- (13,0, = 0., could be reduced to problem (0.2). We note thai, in problem (0.2), the shift 

ott) need not be a Carlemao shift, i.e., it is oot necessary that a .. (t) :::: t for some integer 

11 ~ 2, where ai(l) "" o(ok_dt)) , 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 

appeared in BPAFS theory in connection with the study of the problem 

(0.4) 

by Carle man (2) who, in particular, showed that problem (0.4) Wall a natural generalization 

of the problem on the existence of an a. utomorphic function belonging to a certain group 

of Fucs. Thus, the paper by Vckua (2) is also t he fint paper in which a singular integral 

equation with a non·Carieman 5hifl is considered . The study carried out by Vekua shows, 

in particular, that the Noether theory of operator'/' does not depend on the properties 

of the shih o(!). This is typical of the fi rst period of development of SIES and BPAFS 

theory which lasted over 20 yeal"ll. All the results obtained in that period were related 

either to equations and problems with Carleman shih or to SIES and BPAFS with such 

restrictions that the shift ott) could not influence the Noether theory. At the same time, 

great emphasis was laid on the necessi ty of investigating SIES and BPAf'S that made their 

Noether theory depend e5.'lentially on the propertie! of thtl shift ott). Thus, for example, 

one of the limit problems for differential equMions with second order part ial deri vatives 

of mixed (elliptic· hyperbolic) type (this is the proulem M according to the terminology of 

Ditzadze (I) is reduced to SIES in the form 

(0.') 

where ott) is a non-Carleman shift, which has a finit.e number of fixed points. The Noelher 

theory o f such equations depends es~entially 00 the fad that o(t) is a non-Carleman shift 

(_ Chapter 2, where a class of equations is considered such thAt equation (0.5) is a 

particular Cll5e, but with the additionlllll55umption that /(/, T) dOH not depend on T). 
In the 1950's, there appeared monographs uy N. P. Vekua (I) (first edition) and I. N. 
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Vekua., where BPAFS and SIES and t heir applications to mechanics aDd geometry were 

considered. Undoubtedly, all this actively stimulated further development of the theory. 

The informative burst i n these subjects in t he early 1940's with papers by Kveselava IUld 

N. P. Vekua led to an extensive accumu lation of factual material up to the early 1970 's. 

NaturaJly, it became necessary to syst.emalize t his material and make it available to a wider 

circle of reader. in the form of a monograph. This work was carried out by Litvinchuk (I). 

The contents of this book can be of interest regardi ng any of the three following topics; 

(1) Solvability theory of BPAFS; 

(2) The reduction of BPAFS to SI&'3; 

(3) The Noether theory or SIES. 

Fifteen years dter the publication of Litvinchuk', book, mentioned above, BPA FS the

ory has not undergone important changes. Two page:!: (see Chapter 4, Section 4.1) is aJl v.-e 

require to show (certainly wi thout proofs) the main new results ar rived at in connection 

with the solvability t heory of BP FAS. One can say that th is important part of DPAFS and 

SIES theory is It ill awaiting its investigators. At pr(''Sent, the lIIateriaJ of Topic (2) above 

would require adding a number of new classes of [)PAFS equivalent to the SIES considered 

in this book. This would, however, unduly increase its volume. Rather than dwell upon 

this subject, we refer the inter(.'Stoo reader to some papers, e.g.: Isakhanov (2), Latushkin , 

Litvinchuk and Spitkovskii (I), N.J . Lisovels (I), (2), Li tvinchuk (4), Scorokhod (I) . 

Change!! of t he ut~t importance have, however, ~aken place in SJF.S theory. During 

the IS-year period referred to, no less than 300 papers were published on the Nocther 

theory of SIES a.nd also on a closely related tollic, ~he Noether theory of integral operators 

of con\'olut ion type ( with periodic:: coefficients) and their discrete analogues, on the theory 

of pseudo-differential operalors wit h shift , etc. Th is large current of information has not, 

howe\-er, been systematized and described in monograph literature. The Noether theory o f 

singular integral operators (S IO) with shift which have II. non-empty set of periodic points 

has been particularly developed . In this respect we point Ollt that in the above-mentioned 

monograph of Litvinchuk only one case is somewhat incompletely discussed: that's where a 

set of periodic points of the shift coincides with a contour-bearer of the operator (the case 

of a Ca.rleman shift). In this case, the sYlllbol of the S IO with shift as well as the symbol 

of the classical 510 without shift have a !inite-dimensional representation ( in the fO fm of 

a matrix function). This hu mainly al lowed to reduce an S10 with a Carleman shift to 

an SIO without shift. But if the set of periodic poi nts is non ·empty and docs not coincide 

with the contour-be.&rcr, then there appears a new factor in the Noether theory of SID 
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with shift. Jus t n ow the symbol of 510 with shift hat essentially an infinite dimensional 

representation (in the form of an operator· valued function). Thi, led to the necessity of 

creating new methods of investigation as compared with the case of a Carleman shift. 

In particular, local methods have been created. These method, essential ly generalize the 

loca.! principle of Simonenka. Guhberg.K rupnik. Douglas.Allan developed, at the time, for 

the c reation of the Noether theory of an 510 without shift. Moreover, it W&8 necessary to 

solve the problem of fun ctional (non· integra[) operators (FO ) invertibi li ty, itself of great 

importance. Incidently, this problem is trivial in the Carleman ca..se because it is reduced to 

the solution of a fin ite system of linear algebraic equations. In the non·Carleman case, the 

problem of PO inver ti bility lurnoo out to be complicated enough and aduaJJy closely related 

to certai n problems of the theory of dynamic systems. In t his respect, the investigation of 

the problem of the invertibilily of func tional operators by "Singul&ti ng people" has already 

led to new results in the area of dynamic systems (see Chapter J, Section 6. 1). Finally, the 

development of the 510 thoory with non· Car[eman shift has also enabled a new apprOAch to 

the classical Nocther t heory of 510 without shift, thu~ provid ing a statement of the theory 

which is at once oonlplete, clear and concise. h should also be poi nted out that, during 

the last fifteen years, there have been essen~ial developments in ~he theory of an 510 with 

shift, which has no periodic points, and in that of an SIO with a non· invertible shift; the 

theory o f an SIO with an amenable discrete group of shifts has also startcd t o dcvelop. 

Such results have matured to the point of making it possible to attempt a fresh review of 

the theory. 

It h ill! t herdortl bt:..:uUle utlCe!lSl\ry to gcucrl\liztlaud tu urder tlltl !Tlatt.'1·ial u u tlltl Nuethtlr 

theory o f SIO with shi ft accumulated during the last fifteen years, which is a purpose this 

monograph tries to serve. First of all, we have sought to describe the methods to investigate 

the Noetheri ty of 510 wi th shift. This seems to us to be of particu lar importance because, as 

already pointed ou t , the methods developed by 510 theory with shiflll.lso make it possible 

to organize a scheme. both new and simple, to study the Noetherity of classical objects 

(SIO with a Cauchy kernel, Wiener. Hopf operators, etc.). 

The authors have a twofold purpose which cou$ists in presenting a statement of the 

theory th at can be easily understood, accessible to a wider circle of readers, but that 

which is also sufficiently condensed. In order to achieve this goal, only the simplest model 

situations are discussed, with detailed proofs, in this monograph . Cases considered to be 

more complex are reviewed in the fi nal parh of the oorrespondinl: chapters wit h citation 

of t he original literature. In this respect, the authors have nol Aimed at supplying an 

exhaultive bibliography but , at the same time, have tried not to omit publications di rectly 

concerned with the material under consideration. Por example, we leave alit questions 
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dealing with the normalization of non-Noether SIO with shift (see, for example, Mikhlin 

and Proolldorf (I), Kravchenko (6)), the theory of which hM just started to be studied in its 

fundamental points. We do not dwell upon the Noether theory of non-bounded 510 and 510 
with shift (see, for example, Kra.vchenko (7, 8)), etc. The reading of the final paragraphs of 

chapters is nol generally necessary for the understanding of the main material of the book. 

The authors have tried to favour clarity Md simplici ty rather than pursue questions of 

generali ty and completeness from a purely mathematical point of view. For instance, the 

authors consider the simplest hearer of an operator, i.e., a simple dosed Lyapunov contour 

bounding a simply connected domain instead of a composite contour formed by simple 

rectifiable lines on which the operator of singular integration is bounded; the lIegment 

[O, IJ with fixed points of the shift only at the ends 0 and 1, inst.ead of a collection of 

nonclosed curves with an arbit rary disposition of periodic poinls of the shift; or &Mume 

a Holderness of the derivat ive of the shih where a piecewille continuity of this derivative 

would be considered, etc. 

As a rule, we do not begin a particular discussion by presenting the most general aspect 

of the problem but, rather, its simplest casco Thus, in Chapter 2, we study the case where 

the "coefficients" of the SIO with shift are binomial FO of type al +W, where U is the shift 

operator, J is the identity operator and al, bl are operators of multiplication by func tions 

continuous on the closed contour-bearer. We call such operatoMi singular integral functional 

operators (511"0) of the l!!...order. In Chapter 3, these "coefficients" are already polynomials 

Lt=o a.U· relative to the shih operator U (SIFO of m!.h order) but here the contour-bearer 

is a closed one, and t he functions ak are continuous alii berore. In Chapter 4, we fil"1t consider 

binomial "c:oeffidcnh" and y,;c a.!ISUUle that the (unctious ". are continuous as before but 

the contour r (r = [0, I)) is already nondoscd . Towards the end of this chapter, we consider 

polynomial "cocfficient9" . Only Chapter 5 is devoted to the study of an SIFO of the algebra 

generated by opc!rators of mult.iplication by continuous functions , the shift operator U and 

the operator of singular integration Sj the contour r is first assumed as being closed and 

then nonclosed. In general, we may say that Chapters 1·4 of this monograph serve as a 

prologue to Chapter 5 which is, in turn, a brief introduction to t he theory of FO and Slro 

as shown in the conclusions of this chapter (see §4 of Chapter 5) . 

Since, in this monograph, a new methodical approach to the Noether theory of classical 

SID with Cauchy kernel is presented, this book can also be recommended to those readers 

who are inter~ted only in the SIO without shift. To these, we would suggest reading only 

§§I and 2 of ChapLer I, Sections l.l and 1.2 of §I and Section 2.1 of §2 of Chapter 2, §I of 

Chapter 3, §l of Chapter 4, §l of Chapter 5. All of this is s o presented that it can be read 

indepc!ndt!ntly of the rest of the material and will thus be of use to such readers. 
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Finally, the reader interested only in functional operators (and we hope there will also 

be sum readers) may read only §§3 and 4 of Chapter I, Sections 1.3 - 1.6 of §l of Chapter 2, 

§§2, 4 and 6 of Chapter 3, Sections 2.1 and 2.2 of 2 a nd Sections 3.1 and 3.3 of 3 of Chapter 

5. All of this materia.l, mainly dealing with FO invertibility, i s also presented independently 

of the rest. 

Thi, book was written so t hs. t most of it can be studied as part of the fundamenta ls of 

University courses. The knowledge ne<:e'lsary for reading this book, which is not provided 

by Uni~nity courses, is offered together with complete proofs in Chapter I. The above 

mentioned book by Litvinchuk does not have to be read before this monograph, which is 

autonomous wi th regard to that book. 

Professor Jury I. Karlovich and Dr. J ury D. Latushk in read the manuscript and made 

some useful remarks and suggestions. 

The Mathematical Department of the Instituto Superior Tecnico, Professors Antonio 

F. doe Santos and LUIS T. Magalhies, who head it, and in particular a Professor of this 

Department, Francisco Sepllh'eda Teixeira, rendered the authors an invaluable service by 

solving problems relakd to the organization and preparation of the English version of the 

book. Without this help, t he English ver~ ion cOlllJ not be puhl isheJ at all. 

Professors Francisco Sepulveda Teixeira and Amarino Lebre undertook the difficult task 

of reading the fi rs t very imperfect Engli~1t manUSCl'ipL prepared by Litvi nchuk, and carr ied 

Ollt the vast work of improving the text. In some cases , their remarks were of use to the 

Russian original a.. well. 

Ana Mou ra made some helpful remarks regarding tlte translation, and she also translated 

the bibliographic data into 8nglish. Ana l)aula Si lva type<! the manuscript . 

The authors express to all and each tlJ(,:ir dt."CJ! gratiluJc. 

Finally, we must thank J .N .l .C: l' ., which partiAlly supported the typesetting of the 

manuscript t hrough project "iii PBlC/C/C EN/ l().IO/ 92. 
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