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0.1 Introduction

The Riemann boundary value problem is referred to as the Riemann-Hilbert problem, the
Hilbert problem and also the problem of the conjugation of analytic functions. It consists
of finding a function ®(z) analytic everywhere on the complex plane except on the points

of the given contour I', satisfying the boundary condition
(1) = G~ () + 9(1) , teT (0.1)

where ®%*(t) are the limit values of the unknown function ®(z), and G(t),g(t) are given
functions.

The formulation of the problem is more general than that of problem (0.1), and belongs
to Riemann (I, p. 177), and the first investigation of problem (0.1) was carried out by
Hilbert (1) in 1904, Using certain additional restrictions Hilbert reduced the problem (0.1)
to a Fredholm integral equation. After this (apparently on Hilbert’s initiative), in 1907
Haseman (1) carried out an analogous investigation of a problem where the condition of
conjugation of the limit values ®*(t) of the analytic function ®*(z) was replaced by a more
general one,

St (a(l)) = G()® () +g(t), teTl (0.2)

where a(t) is a diffeomorphism (shift) preserving the orientation of a closed contour I' onto
itself. Historically, the paper by Haseman (1) was the first in which the boundary value
problem with a shift (or a displacement) was considered for analytic functions.

The classical theory of singular integral equations (SIE) and boundary value problems
for analytic functions (BPAF), at the source of which are to be found the names of Hilbert
and Poincaré, have been completed mainly by Soviet mathematicians. The most active
founders of the theory, Muskhelishvili (1) and Gakhov (2), have summed up this period
in their well-known monographs. These monographs also show that the theory has been
mainly applied to problems of the theory of elasticity.

The successful development of the theory of SIE and BPAF naturally stimulated the
study of singular integral equations with shift (SIES) and boundary value problems for
analytic functions with shift (BPAFS). The investigation of BPAFS was, for the first time,
yielding fruit. The papers by Kveselava (1) - (4) (1946-1948) were fundamental in this
direction. In these papers, Kveselava, in particular, proved that the solvability picture of
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problem (0.2) was the same as that of problem (0.1). Incidentally, later on Mandzhavidze
and Khvedelidze (1) and Simonenko (1) achieved a direct reduction of problem (0.2) to
problem (0.1) with the help of conformal mappings. Apparently, the first paper in which
SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that
the equation

To=ap+a:We+azSp+aWSp=f , (0.3)

where a; € C(T'), S is the operator of singular integration with a Cauchy kernel (Syp)(t) =
(md)~! Jo(r — t)Yp(7)dr, W is the shift operator (We)(t) = w(a(t)), in the case a; =
—as, a3 = ay4, could be reduced to problem (0.2). We note that, in problem (0.2), the shift
a(t) need not be a Carleman shift, i.e., it is not necessary that a,(t) = ¢ for some integer
n > 2, where ai(t) = a(ar-1(t)), ao(t) = t. For the first time, the condition ay(t) =t
appeared in BPAFS theory in connection with the study of the problem

o*(a(t)) = G(t)®*(t) (0-4)

by Carleman (2) who, in particular, showed that problem (0.4) was a natural generalization
of the problem on the existence of an automorphic function belonging to a certain group
of Fucs. Thus, the paper by Vekua (2) is also the first paper in which a singular integral
equation with a non-Carleman shift is considered. The study carried out by Vekua shows,
in particular, that the Noether theory of operator 7' does not depend on the properties
of the shift a(t). This is typical of the first period of development of SIES and BPAFS
theory which lasted over 20 years. All the results obtained in that period were related
either to equations and problems with Carleman shift or to SIES and BPAFS with such
restrictions that the shift a(t) could not influence the Noether theory. At the same time,
great emphasis was laid on the necessity of investigating SIES and BPAFS that made their
Noether theory depend essentially on the properties of the shift a(t). Thus, for example,
one of the limit problems for differential equations with second order partial derivatives
of mixed (elliptic-hyperbolic) type (this is the problem M according to the terminology of
Bitzadze (1) is reduced to SIES in the form

o) = [ Tl wrdr 4900 (03)

where «(t) is a non-Carleman shift, which has a finite number of fixed points. The Noether
theory of such equations depends essentially on the fact that «(t) is a non-Carleman shift
(see Chapter 2, where a class of equations is considered such that equation (0.5) is a
particular case, but with the additional assumption that K(¢,7) does not depend on 7).
In the 1950's, there appeared monographs by N. P. Vekua (1) (first edition) and 1. N.
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Vekua, where BPAFS and SIES and their applications to mechanics and geometry were
considered. Undoubtedly, all this actively stimulated further development of the theory.
The informative burst in these subjects in the early 1940’s with papers by Kveselava and
N. P. Vekua led to an extensive accumulation of factual material up to the early 1970’s.
Naturally, it became necessary to systematize this material and make it available to a wider
circle of readers in the form of a monograph. This work was carried out by Litvinchuk (1).

The contents of this book can be of interest regarding any of the three following topics:
(1) Solvability theory of BPAFS;
(2) The reduction of BPAFS to SIES;
(3) The Noether theory of SIES.

Fifteen years after the publication of Litvinchuk’s book, mentioned above, BPAFS the-
ory has not undergone important changes. Two pages (see Chapter 4, Section 4.1) is all we
require to show (certainly without proofs) the main new results arrived at in connection
with the solvability theory of BPFAS. One can say that this important part of BPAFS and
SIES theory is still awaiting its investigators. At present, the material of Topic (2) above
would require adding a number of new classes of BPAFS equivalent to the SIES considered
in this book. This would, however, unduly increase its volume. Rather than dwell upon
this subject, we refer the interested reader to some papers, e.g.: Isakhanov (2), Latushkin,
Litvinchuk and Spitkovskii (1), N.I. Lisovets (1), (2), Litvinchuk (4), Scorokhod (1).

Changes of the utmost importance have, however, taken place in SIES theory. During
the 15-year period referred to, no less than 300 papers were published on the Noether
theory of SIES and also on a closely related topic, the Noether theory of integral operators
of convolution type (with periodic coefficients) and their discrete analogues, on the theory
of pseudo-differential operators with shift, etc. This large current of information has not,
however, been systematized and described in monograph literature. The Noether theory of
singular integral operators (SIO) with shift which have a non-empty set of periodic points
has been particularly developed . In this respect we point out that in the above-mentioned
monograph of Litvinchuk only one case is somewhat incompletely discussed: that’s where a
set of periodic points of the shift coincides with a contour-bearer of the operator (the case
of a Carleman shift). In this case, the symbol of the SIO with shift as well as the symbol
of the classical SIO without shift have a finite-dimensional representation (in the form of
a matrix function). This has mainly allowed to reduce an SIO with a Carleman shift to
an SIO without shift. But if the set of periodic points is non-empty and does not coincide
with the contour-bearer, then there appears a new factor in the Noether theory of SIO
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with shift. Just now the symbol of SIO with shift has essentially an infinite dimensional
representation (in the form of an operator-valued function). This led to the necessity of
creating new methods of investigation as compared with the case of a Carleman shift.
In particular, local methods have been created. These methods essentially generalize the
local principle of Simonenko-Gohberg-Krupnik-Douglas-Allan developed, at the time, for
the creation of the Noether theory of an SIO without shift. Moreover, it was necessary to
solve the problem of functional (non-integral) operators (FO) invertibility, itself of great
importance. Incidently, this problem is trivial in the Carleman case because it is reduced to
the solution of a finite system of linear algebraic equations. In the non-Carleman case, the
problem of FO invertibility turned out to be complicated enough and actually closely related
to certain problems of the theory of dynamic systems. In this respect, the investigation of
the problem of the invertibility of functional operators by “Singularing people” has already
led to new results in the area of dynamic systems (see Chapter 3, Section 6.1). Finally, the
development of the S10 theory with non-Carleman shift has also enabled a new approach to
the classical Noether theory of 51O without shift, thus providing a statement of the theory
which is at once complete, clear and concise. It should also be pointed out that, during
the last fifteen years, there have been essential developments in the theory of an SIO with
shift, which has no periodic points, and in that of an SIO with a non-invertible shift; the
theory of an SIO with an amenable discrete group of shifts has also started to develop.
Such results have matured to the point of making it possible to attempt a fresh review of

the theory.

It has therefore become necessary to generalize and to order the material on the Noether
theory of SIO with shift accumulated during the last fifteen years, which is a purpose this
monograph tries to serve. First of all, we have sought to describe the methods to investigate
the Noetherity of SIO with shift. This seems to us to be of particular importance because, as
already pointed out, the methods developed by S1O theory with shift also make it possible
to organize a scheme, both new and simple, to study the Noetherity of classical objects

(S10 with a Cauchy kernel, Wiener-Hopf operators, etc.).

The authors have a twofold purpose which consists in presenting a statement of the
theory that can be easily understood, accessible to a wider circle of readers, but that
which is also sufficiently condensed. In order to achieve this goal, only the simplest model
situations are discussed, with detailed proofs, in this monograph. Cases considered to be
more complex are reviewed in the final parts of the corresponding chapters with citation
of the original literature. In this respect, the authors have not aimed at supplying an
exhaustive bibliography but, at the same time, have tried not to omit publications directly

concerned with the material under consideration. For example, we leave out questions
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dealing with the normalization of non-Noether SIO with shift (see, for example, Mikhlin
and Préssdorf (1), Kravchenko (6)), the theory of which has just started to be studied in its
fundamental points. We do not dwell upon the Noether theory of non-bounded SIO and SIO
with shift (see, for example, Kravchenko (7, 8)), etc. The reading of the final paragraphs of
chapters is not generally necessary for the understanding of the main material of the book.

The authors have tried to favour clarity and simplicity rather than pursue questions of
generality and completeness from a purely mathematical point of view. For instance, the
authors consider the simplest bearer of an operator, i.e., a simple closed Lyapunov contour
bounding a simply connected domain instead of a composite contour formed by simple
rectifiable lines on which the operator of singular integration is bounded ; the segment
[0,1] with fixed points of the shift only at the ends 0 and 1, instead of a collection of
nonclosed curves with an arbitrary disposition of periodic points of the shift; or assume
a Holderness of the derivative of the shift where a piecewise continuity of this derivative

would be considered, etc.

As a rule, we do not begin a particular discussion by presenting the most general aspect
of the problem but, rather, its simplest case. Thus, in Chapter 2, we study the case where
the “coeflicients” of the SIO with shift are binomial FO of type al + bl , where U is the shift
operator, [ is the identity operator and al, b] are operators of multiplication by functions
continuous on the closed contour-bearer. We call such operators singular integral functional
operators (SIFO) of the 1®%-order. In Chapter 3, these “coefficients” are already polynomials
Lo axU* relative to the shift operator U (SIFO of mt: order) but here the contour-bearer
is a closed one, and the functions a; are continuous as before. In Chapter 4, we first consider
binomial “coefficients” and we assume that the [unctions a; are continuous as before but
the contour T'(T" = [0, 1)) is already nonclosed. Towards the end of this chapter, we consider
polynomial “coefficients” . Only Chapter 5 is devoted to the study of an SIFO of the algebra
generated by operators of multiplication by continuous functions, the shift operator U and
the operator of singular integration S; the contour T' is first assumed as being closed and
then nonclosed. In general, we may say that Chapters 1-4 of this monograph serve as a
prologue to Chapter 5 which is, in turn, a brief introduction to the theory of FO and SIFO
as shown in the conclusions of this chapter (see §4 of Chapter 5).

Since, in this monograph, a new methodical approach to the Noether theory of classical
SIO with Cauchy kernel is presented, this book can also be recommended to those readers
who are interested only in the SIO without shift. To these, we would suggest reading only
§81 and 2 of Chapter 1, Sections 1.1 and 1.2 of §1 and Section 2.1 of §2 of Chapter 2, §1 of
Chapter 3, §1 of Chapter 4, §1 of Chapter 5. All of this is so presented that it can be read
independently of the rest of the material and will thus be of use to such readers.
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Finally, the reader interested only in functional operators (and we hope there will also
be such readers) may read only §§3 and 4 of Chapter 1, Sections 1.3 - 1.6 of §1 of Chapter 2,
§82, 4 and 6 of Chapter 3, Sections 2.1 and 2.2 of 2 and Sections 3.1 and 3.3 of 3 of Chapter
5. All of this material, mainly dealing with FO invertibility, is also presented independently
of the rest.

This book was written so that most of it can be studied as part of the fundamentals of
University courses. The knowledge necessary for reading this book, which is not provided
by University courses, is offered together with complete proofs in Chapter 1. The above
mentioned book by Litvinchuk does not have to be read before this monograph, which is
autonomous with regard to that book.

Professor Jury [. Karlovich and Dr. Jury D. Latushkin read the manuscript and made
some useful remarks and suggestions.

The Mathematical Department of the Instituto Superior Técnico, Professors Anténio
F. dos Santos and Luis T. Magalhées, who head it, and in particular a Professor of this
Department, Francisco Sepilveda Teixeira, rendered the authors an invaluable service by
solving problems related to the organization and preparation of the English version of the
book. Without this help, the English version could not be published at all.

Professors Francisco Sepiilveda Teixeira and Amarino Lebre undertook the difficult task
of reading the first very imperfect English manuscript prepared by Litvinchuk, and carried
out the vast work of improving the text. In some cases, their remarks were of use to the
Russian original as well.

Ana Moura made some helpful remarks regarding the translation, and she also translated
the bibliographic data into English. Ana Paula Silva typed the manuseript .

The authors express to all and each their deep gratitude.

Finally, we must thank J.N.L.C.'T.; which partially supported the typesetting of the
manuscript through project n2 PBIC/C/CEN/1040/92.



	FM

