Skip to main content

The distribution of stomata

  • Chapter
Stomata

Abstract

One of the earliest recorded vascular plants is Cooksonia pertoni and its fossil remains show the presence of stomata (Edwards et al., 1992) (Fig. 2.1). Such fossil records suggest that stomata were relatively large in early plants. In Zosterphyllum myretonianum, stomata up to 120 µm long were recorded (Lele and Walton, 1960–61). These are the largest stomata that have been measured in living or extinct plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.J. (1975) The development of lenticels on potato tubers. Ann.Appl. Biol., 79, 264–273.

    Google Scholar 

  • Blanke, M. and Bonn, F.L. (1985) Spaltöffnungen, Fruchtoberflache und Transpiration wachsender Apelfrüchte der Sorte ‘Golden Delicious’. Erwebsobstbau, 27,139–143.

    Google Scholar 

  • Brainerd, K.E. and Fuchigami, H. (1982) Stomatal functioning of in vitro and greenhouse apple leaves in darkness, mannitol and CO2. J. Exp.Bot., 33, 388–392.

    Article  CAS  Google Scholar 

  • Bristow, J.M. and Looi, A.-S. (1968) Effects of carbon dioxide on the growth and morphogenesis of Marsilea. Am. J. Bot., 55, 884–889.

    Article  CAS  Google Scholar 

  • Bornman, C.H. (1972) Welwitschia mirabilis: paradox of the Namib desert. Endeavour, 31, 95–99.

    Google Scholar 

  • Bünning, E. and Sagromsky, H. (1948) Die Bildung des Spaltöffnunsmusters in der Blattepidermis. Z. Naturforsch., 38,203–216.

    Google Scholar 

  • Cardon, Z.G., Mott, K.A. and Berry, J.A. (1994) Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated with gas-exchange techniques. Plant Cell Environ., 17, 995–1007.

    Article  Google Scholar 

  • Carpenter, S.B. and Smith, N.D. (1975) Stomatal distribution and size in southern Appalachian hardwoods. Can. J. Bot., 53, 1153–1156.

    Article  Google Scholar 

  • Chaffey, N.J. (1982) Presence of stomata-like structures in the ligule of Agrostis gigantea Roth. Ann. Bot., 50, 717–720.

    Google Scholar 

  • Charlton, W.A. (1990) Differentiation in leaf epidermis of Chlorophytum comosum. Baker. Ann. Bot., 66, 567–578.

    Google Scholar 

  • Ciha, A.J. and Brun, WA. (1975) Stomatal size and frequency in soybeans. Crop Sci., 15, 309–313.

    Article  Google Scholar 

  • Cole, D.F. and Dobrenz, A.K. (1970) Stomatal density of alfalfa (Medicago sativa L.). Crop Sci., 10, 20–24.

    Google Scholar 

  • Cooper, C.S. and Quails, M. (1967) Morphology and chlorophyll content of shade and sun leaves of two legumes. Crop Sci., 7, 672–673.

    Article  Google Scholar 

  • Croxdale, J., Smith, J., Yandell, B. and Johnson, B. (1992) Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory. Dev. Biol., 149, 158–167.

    Article  PubMed  CAS  Google Scholar 

  • Dale, J.E., Felippe, G.M. and Fletcher, G.M. (1972) Effect of shading the first leaf on growth of barley plants. Ann. Bot., 36, 385–395.

    Google Scholar 

  • Downton, W.J.S., Loveys, B.R. and Grant, W.J.R. (1988) Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol., 108, 263–266.

    Article  CAS  Google Scholar 

  • Edwards. D., Davies, K.L. and Axe, L. (1992) A vascular conducting strand in the early land plant Cooksonia. Nature, 357, 683–685.

    Article  Google Scholar 

  • Foster, J.R. and Smith, W.K. (1986) Influence of stomatal distribution on ranspiration in low wind environments. Plant Cell Environ., 9, 51–759.

    Article  Google Scholar 

  • Friend, D.J.C. and Pomeroy, M.E. (1970) Changes in cell size and number associated with effects of light intensity and temperature on the leaf morphology of wheat. Can. J. Bot., 48, 85–90.

    Article  Google Scholar 

  • van Gardingen, P.R., Jeffree, C.E. and Grace, J. (1989) Variation in stomatal aperture in leaves of Avena fatua L. observed by low-temperature scanning electron microscopy. Plant Cell Environ., 12, 887–898.

    Article  Google Scholar 

  • Gunasekera, D. and Berkowitz, G.A. (1992) Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon.Plant Physiol., 98, 660–665.

    Article  PubMed  CAS  Google Scholar 

  • Hake, S. and Sinha, N. (1991) Genetic analysis of leaf development.Oxford Surv. Plant Mol. Cell Biol. 7, 187–254.

    CAS  Google Scholar 

  • Hashimoto, Y., Ino, T., Kramer, P.J. et al. (1984) Dynamic analysis of water stress of sunflower leaves by means of a thermal image processing system. Plant Physiol., 76, 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Heichel, G. (1971) Stomatal movements, frequencies, and resistances in two maize varieties differing in photosynthetic capacity. J. Exp. Bot.,22, 644–649.

    Article  Google Scholar 

  • Kappen, L., Andresen, G. and Lösch, R. (1987) In situ observations of stomatal movements.J. Exp. Bot., 38, 126–141.

    Article  Google Scholar 

  • Keeley, J.E., Osmond, C.B. and Raven, J.A. (1984) Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, 310,694–695.

    Article  CAS  Google Scholar 

  • Kleiber, H. and Mohr, H. (1963) Der Einfluss sichtsaber Strahlung auf die Stomata-Bildung in der Epidermis der Kotyledonen von Sinapis alba L. Z. Bot., 52,78–85.

    Google Scholar 

  • Korn, R.W (1981) A neighboring-inhibition model for stomate patterning. Dev. Biol., 88, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Korn, R.W. (1993) Evidence in dicots for stomatal patterning by inhibition. Int. J. Plant Sci., 154, 367–377.

    Article  Google Scholar 

  • Kubinová, L. (1991) Stomata and mesophyll characteristics of barley leaf as affected by light: stereological analysis.J. Exp. Bot., 42, 995–1001.

    Article  Google Scholar 

  • Laisk, A. (1983) Calculation of leaf photosynthetic parameters considering the statistical distribution of stomatal apertures. J. Exp. Bot., 34,1627–1635.

    Article  Google Scholar 

  • Laisk, A., Oja, V. and Kull, K. (1980) Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening.J. Exp. Bot., 31, 49–58.

    Article  Google Scholar 

  • Laptev, Y.P., Makarov, P.P., Glazova, M.V. et al. (1976) Stomata and pollen as indicators of the ploidy of plants. Genetika (translated from Russian), 12, 47–55.

    Google Scholar 

  • Larcher, W. (1980) Physiological Plant Ecology, 2nd edn, Springer,Berlin, p. 252.

    Chapter  Google Scholar 

  • Lefebvre, D.D. (1985) Stomata on the primary root of Pisum sativum L.Ann. Bot., 55, 337–341.

    Google Scholar 

  • Lele, K.M. and Walton, J. (1960–61) Contributions to the knowledge of Zosterophyllum myretonianum Penhallow from the lower old red sandstone of Angus. Trans. Roy. Soc. Ed., 64, 469–477.

    Google Scholar 

  • Lichtenthaler, H.K. (1985) Differences in morphology and chemical composition of leaves grown at different light intensities and qualities, in Control of Leaf Growth, (eds W.J. Baker, W.J. Davies and C.K. Ong), Cambridge University Press, Cambridge, pp. 201–221.

    Google Scholar 

  • Marx, A. and Sachs, T. (1977) The determination of stomatal pattern and frequency in Anagallis. Bot. Gaz., 138, 385–392.

    Article  Google Scholar 

  • Masterson, J. (1994) Stomatal size in fossil plants: evidence for ployploidy in majority of angiosperms. Science, 264, 421–424.

    Article  PubMed  CAS  Google Scholar 

  • Meidner, H. and Mansfield, T.A. (1968) Physiology of Stomata, McGraw-Hill, London.

    Google Scholar 

  • Miranda, V, Baker, N.R. and Long, S.P. (1981) Anatomical variation along the length of the Zea mays leaf in relation to photosynthesis. New Phytol., 88, 595–605.

    Article  Google Scholar 

  • Miskin, K.E. and Rasmusson, D.C. (1970) Frequency and distribution of stomata in barley. Crop Sci., 10, 575–578.

    Article  Google Scholar 

  • Mott, K.A., Cardon, Z.G. and Berry, J.A. (1993) Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ., 16, 25–34.

    Article  Google Scholar 

  • Mott, K.A., Gibson, A.C. and O’Leary, J.W. (1982) The adaptive significance of amphistomatous leaves. Plant Cell Environ., 5, 455–460.

    Article  Google Scholar 

  • Oberbauer, S.F., Strain, B.R. and Fetcher, N. (1985) Effect of CO2 enrich-ment on seedling physiology and growth of two tropical species.Physiol. Plant., 65, 352–356.

    Article  CAS  Google Scholar 

  • Parkhurst, D.F. (1978) The adaptive significance of stomatal occurrence on one or both surfaces of leaves.J. Ecol., 66, 367–383.

    Article  Google Scholar 

  • Penfound, W.T. (1931) Plant anatomy as conditioned by light intensity and soil moisture. Am. J. Bot., 18, 197–209.

    Article  Google Scholar 

  • Rutter, J.C. and Willmer, C.M. (1979) A light and electron microscopic study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure. Plant Cell Environ., 2, 211–219

    Article  Google Scholar 

  • Sachs, T. (1991) Pattern Formation in Plant Tissues, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Salisbury, E.J. (1927) On the causes and ecological significance of stomatal frequency with special reference to woodland flora. Phil. Trans.Roy. Soc. Lond., Ser B, 216, 1–65.

    Article  Google Scholar 

  • Sallanon, H., Laffray, D. and Coudret, A. (1991) Ultrastructure and functioning of guard cells of in vitro cultured rose plants. Plant Physiol.Biochem., 29, 333–339.

    CAS  Google Scholar 

  • Santamaria, J.M., Davies, W.J. and Atkinson, C.J. (1993) Stomata on micropropagated delphinium plants respond to ABA, CO2, light and water potential but fail to close fully.J Exp. Bot., 44, 99–107.

    Article  CAS  Google Scholar 

  • Schoch, P.-G. (1978) Différentiation numérique des stomates du Vigna sinensis L. et de quelques autres espèces. Doctoral thesis, INRA,Stations de Bioclimatologie de Guadeloupe et d’Avignon-Montfavet.

    Google Scholar 

  • Schoch, P.-G., Lecharny, A., Jaques, R. and Zinsou, C. (1977) Phytochrome et indice stomatique des feuilles du Vigna sinensis L. C.R. Acad. Sci. Paris, 285, 877–879.

    Google Scholar 

  • Schoch, P-G., Zinsou, C. and Sibi, M. (1980) Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L.J. Exp. Bot., 31, 1211–1216.

    Article  Google Scholar 

  • Short, K.C., Price, L and Roberts, A.V (1981) Micropropagation of roses, in The Rose Annual, (ed. J. Harkness), The Royal National Rose Society, London.

    Google Scholar 

  • Sinha, N. and Hake, S. (1990) Mutant characters of Knotted maize leaves are determined in the innermost tissue layers. Dev. Biol., 141,203–210.

    Article  PubMed  CAS  Google Scholar 

  • Slavik, B. (1963) The distribution pattern of transpiration, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade. Biol. Plant., 5, 143–153.

    Article  Google Scholar 

  • Smith, WK. (1981) Temperature and water relations patterns in subalpine understorey plants. Oecologia, 48, 353–359.

    Article  Google Scholar 

  • Smith, S., Weyers, J.D.B, and Berry, WG. (1989) Variation in stomatal haracteristics over the lower surface of Commelina communis eaves. Plant Cell Environ., 12, 653–659.

    Article  Google Scholar 

  • Spector, WS. (1956) In Handbook of Biological Data XXXVI, WB.Sanders Co., Philadelphia, PA, p. 146.

    Google Scholar 

  • Spence, R.D. (1987) The problem of variability in stomatal responses,particularly aperture variance, to environmental and experimental conditions. New Phytol., 107, 303–315.

    Article  Google Scholar 

  • Stebbins, G.L. and Jain, S.K. (1960) Developmental studies of cell differentiation in the epidermis of monocotyledons. Dev. Biol., 2, 409–426.

    Article  Google Scholar 

  • Stebbins, G.L. and Shah, S.S. (1960) Developmental studies of cell differentiation in the epidermis of monocotyledons. Dev. Biol., 2, 477–500.

    Article  Google Scholar 

  • Terashima, I., Wong, S.-C., Osmond, C.B. and Farquhar, G.D. (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant CellPhysiol., 29, 385–394.

    CAS  Google Scholar 

  • Turner, N.C. (1970) Responses of adaxial and abaxial stomata to light.New Phytol., 69, 647–653.

    Article  Google Scholar 

  • Turner, N.C. and Begg, J.E. (1973) Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. I At high soil water potential. Plant Physiol., 51, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Turner, G.W and Lersten, N.R. (1983) Raised stomatal clusters on Coleus (Lamiaceae) stems. Am. J. Bot., 70, 975–977.

    Article  Google Scholar 

  • Weyers, J.D.B., Lawson, T. and Peng, Z.Y (1995) Variation in stomatal characteristics at the whole-leaf level, in Scaling Up, (eds P Van Gardingen, G. Foody and P Curran), Cambridge University Press, Cambridge, pp. 65–8.

    Google Scholar 

  • Wild, A. and Wolf, G. (1980) The effect of different light intensities on the frequency and size of stomata, the size of cells, the number, size and chlorophyll content of chloroplasts in the mesophyll and the guard cells during the ontogeny of primary leaves of Sinapis alba. Z. Pflanz., 97, 325–342.

    CAS  Google Scholar 

  • Willmer, C.M. (1993) The evolution, structure and functioning of stomata. Bot. J. Scot., 46, 33–445.

    Article  Google Scholar 

  • Woodward. F.I. (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 327, 617–618.

    Article  Google Scholar 

  • Woodward, F.I. (1988) The responses of stomata to changes in atmospheric levels of CO2. Plants Today, 1, 132–135.

    Google Scholar 

  • Woodward, F.I. and Bazzaz, F. (1988) The responses of stomatal density to CO2 partial pressure J. Exp. Bot., 39, 1771–1781.

    Article  Google Scholar 

  • Yang, M. and Sack, F. (1993) An Arabidopsis mutant with multiple stomata. Plant Physiol. Suppl., 102, 122.

    Google Scholar 

  • Zeiger, E. and Stebbins, G. L. (1972) Developmental genetics in barley: a mutant for stomatal development. Am. J. Bot., 59, 143–148.

    Article  Google Scholar 

  • Ziegler, H. (1987) The evolution of stomata, in Stomatal Function, (eds E. Zeiger, G.D. Farquhar and I.R. Cowan), Stanford University Press.Stanford, CA, pp. 29–58.

    Google Scholar 

  • Ziv, M., Schwartz, A. and Fleminger, D. (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sei., 52, 127–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Colin Willmer and Mark Fricker

About this chapter

Cite this chapter

Willmer, C., Fricker, M. (1996). The distribution of stomata. In: Stomata. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0579-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0579-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4256-7

  • Online ISBN: 978-94-011-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics