Skip to main content

Part of the book series: Developments in Plant Breeding ((DIPB,volume 3))

Summary

Somaclonal variation is a tool that can be used by plant breeders. The review examines where this tool can be applied most effectively and the factors that limit or improve its chances of success. The main factors that influence the variation generated from tissue culture are (1) the degree of departure from organised growth, (2) the genotype, (3) growth regulators and (4) tissue source. Despite an increasing understanding of how these factors work it is still not possible to predict the outcome of a somaclonal breeding programme. New varieties have been produced by somaclonal variation, but in a large number of cases improved variants have not been selected because (1) the variation was all negative, (2) positive changes were also altered in negative ways, (3) the changes were not novel, or (4) the changes were not stable after selfing or crossing. Somaclonal variation is cheaper than other methods of genetic manipulation. At the present time, it is also more universally applicable and does not require ‘containment’ procedures. It has been most successful in crops with limited genetic systems and/or narrow genetic bases, where it can provide a rapid source of variability for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baillie, A.M.R., B.G. Rossnagel & K.K. Kartha, 1992. Field eval-uation of barley(Hordeum vulgare) L. genotypes derived from tissue culture. Can. J. Plant Sci. 72: 725–733.

    Article  Google Scholar 

  • Bebeli, P., A. Karp & P.J. Kaltsikes, 1988. Plant regeneration from cultured immature embryos of sister lines of rye and triticale differing in their content of heterochromatin 1. Morphogenetic response. Theor. Appl. Genet. 75: 929–936.

    Google Scholar 

  • Bebeli, P.J., P.J. Kaltsikes & A. Karp, 1993a. Field evaluation of somaclonal variation in triticale lines differing in telomeric hete-rochromatin. J. Genet. Breed. 47: 248–249.

    Google Scholar 

  • Bebeli, P.J., P.J. Kaltsikes & A. Karp, 1993b. Field evaluation of somaclonal variation in rye lines differing in telomeric hete-rochromatin. J. Genetics and Breed. 47: 15–22.

    Google Scholar 

  • Benzion, G. & R.L. Phillips, 1988. Cytogenetic stability of maize tissue cultures: a cell line pedigree analysis. Genome 30: 318– 325.

    Article  Google Scholar 

  • Breiman, A., D. Rotem, A. Karp & H. Shaskin, 1987. Heritable somaclonal variation in wild barley(Hordeum spontaneum). The-or. Appl. Genet. 74: 104–112.

    Article  CAS  Google Scholar 

  • Brown, P.T.H., 1989. DNA methylation in plants and its role in tissue culture. Genome 31: 717–729.

    Article  CAS  Google Scholar 

  • Buiatti, M. & F. Gimelli, 1993. Somaclonal variation in ornamentals. Proc. XVIIth Eucarpia Symposium Creating Genetic Variation in Ornamentals.

    Google Scholar 

  • Bush, S.R., E.D. Earle & R.W. Langhans, 1976. Plantlets from petal epiderims and shoot tips of the periclinal chimeraChrysanthe-mum moriloium ‘Indianapolis’. Amer. J. Bot 63: 729–737.

    Article  Google Scholar 

  • Compton, M.E. & R.E. Veilleux, 1991. Variation for genetic recom-bination among tomato plants regenerated from three tissue cul-ture systems. Genome 34: 810–817.

    Article  CAS  Google Scholar 

  • Corley, R.H.V., C.H. Lee, I.H. Law & C.Y. Wong, 1986. Abnormal flower development in oil palm clones. Planter 62: 233–240.

    Google Scholar 

  • Croughan, S.S., 1989. Forage crop improvement through biotechnol-ogy. Proc. XVI International Grassland Congress, Nice, France,p. 414–441.

    Google Scholar 

  • Cullis, C.A. & W. Cleary, 1986. DNA variation in flax tissue culture. Can. J. Genet. Cytol. 28: 247–252.

    CAS  Google Scholar 

  • Dahleen, L.S., D.D. Stutham & H.W. Rines, 1991. Agronomic trait variation in oat lines derived from-tissue culture. Crop Sci. 31: 90–94.

    Article  Google Scholar 

  • D’Amato, F., 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. CRC. Critical Reviews in Plant Science 3: 73–112.

    Article  Google Scholar 

  • D’Amato, F., 1989. Polyploidy in cell differentiation. Caryologia 42: 183–211.

    Google Scholar 

  • Davies, L.J. & D. Cohen, 1992. Phenotypic variation in somaclones ofPaspalum dilatatum and their seedling offspring. Can. J. Plant Sci. 72: 773–784.

    Article  Google Scholar 

  • De Jong, J. & J.B.M. Custers, 1986. Induced changes in growth and flowering of chrysanthemums after irradiation andin vitro culture of pedicels and petal epidermis. Euphytica 35: 137–148.

    Article  Google Scholar 

  • Dhillon, S.S., E.A. Wernsman & J.P. Miksche, 1983. Evaluation of nuclear DNA content and heterochromatin changes in anther-derived dihaploids of tobacco(Nicotiana tabacum) cv. Coker 139. Can. J. Genet. Cytol. 25: 169–173.

    CAS  Google Scholar 

  • Dolezel, J. & F.J. Novak, 1984. Effect of plant tissue culture media on the frequency of somatic mutations inTradescantia stamen hairs. Z. Pflanzenphysiol. 114: 51–58.

    CAS  Google Scholar 

  • Dolezel, J., S. Lucretti & F.J. Novak, 1987. The influence of 2,4-dichlorophenoxyacetic acid on cell cycle kinetics and sister-chromatid exchange frequency in garlic(Allium sativum) meris-tem cells. Biologia Plantarum (Prague) 29: 253–257.

    Article  CAS  Google Scholar 

  • Earle, E.D., V.E. Gracen & M.E. Smith, 1988. Somaclonal varia-tion in corn. p. 257–269. In: F. Valentine (Ed). Forest and Crop Biotechnology: Progress and prospects. Spinger-Verlag, Heidel-berg, Berlin, New York.

    Google Scholar 

  • Eastman, P.A.K., F.B. Webster, A. Pitel & D.R. Roberts, 1991. Eval-uation of somaclonal variation during somatic embryogenesis of interior spruce (Picea gauca engelmanii complex) using culture morphology and isozyme analysis. Plant Cell Rep. 10: 425–430.

    Article  Google Scholar 

  • Eizenga, G.C., 1989. Meiotic analysis of tall fescue somaclones. Genome 32: 373–379.

    Article  Google Scholar 

  • Evans, D.A. & W.R. Sharp, 1986. Applications of somaclonal vari-ation. Biotechnology 4: 528–534.

    Article  Google Scholar 

  • Fowke, L.C., S.M. Attree, H. Wang & D.I. Dunstan, 1990. Micro-tubule organization and cell-division in embryogenic protoplast cultures of white spruce (Picea gauca). Protoplasma 158: 86–94.

    Article  Google Scholar 

  • Ghosh, A. & V.N. Gadgil, 1979. Shift in ploidy level of callus tissue: A function of growth substances. Indian J. Exp. Biol. 17: 562– 564.

    CAS  Google Scholar 

  • Gill, B.S., L.N.W. Kam-Morgan & J.F. Shepard, 1986. Origin of chromosomal and phenotypic variation in potato protoclones. J. Hered. 77: 13–16.

    Google Scholar 

  • Gould, A.R., 1984. Control of the cell cycle in cultured plant cells. C.R.C. Critical Rev. Plant Sci. 1: 315–344.

    Article  Google Scholar 

  • Green, G.E., 1977. Prospects for crop improvement in the field of cell culture. HortSci. 12: 7–10.

    Google Scholar 

  • Heinz, D.J., 1973. Sugar-cane improvement through induced muta-tions using vegetative propagules and cell culture techniques. p. 53–59. In: Induced Mutations in Vegetatively Propagated Plants. Int. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Isabel, N., L. Tremblay, M. Michaud, F.M. Tremblay & J. Bousquet, 1993. RAPDs as an aid to evaluate the genetic integrity of somat-ic embryogenesis-derived populations of Picea mariana (Mill). B.S.P. Theor. Appl. Genet. 86: 81–87.

    CAS  Google Scholar 

  • Jackson, M.B., A.J. Abbott, A.R. Belcher & K.C. Hall, 1987. Gas exchange in plant tissue cultures. p. 61–72. In: M.B. Jackson, S.H. Mantell & J. Blake (Eds). Advances in the Chemical Manip-ulation of Plant Tissue Cultures. British Plant Growth Regulator Group. Monograph 16.

    Google Scholar 

  • James, M.G. & J. Stadler, 1989. Molecular characterization of muta-tor systems in maize embryogenic callus cultures indicates mu element activityin vitro. Theor. Appl. Genet. 77: 383–394.

    Article  CAS  Google Scholar 

  • Johnson, S.S., R.L. Phillips & H.W. Rines, 1987. Meiotic behaviour in progeny of tissue culture regenerated oat plants(Avena sativa L.) carrying near-telocentric chromosomes. Genome 29: 431– 438.

    Article  Google Scholar 

  • Kaeppler, S.M. & R.L. Phillips, 1993. DNA methylation and tissue culture-induced variation in plants.In Vitro Cell Dev. Biol. 29: 125–130.

    Google Scholar 

  • Kaltsikes, P.J. & P.J. Bebeli, 1993. Somaclonal variation causes changes in the inter-relationships between traits in hexaploid Trit-icale. Japan. J. Breed. 43: 45–51.

    Google Scholar 

  • Karp, A., S.H. Steele, N.A. Breiman, P.R.S. Shewry, S. Parmar & M.G.K. Jones, 1987. Minimal variation in barley plants regener-ated from cultured immature embryos. Genome 29: 405–412.

    Article  Google Scholar 

  • Karp, A., 1991. On the current understanding of somaclonal vari-ation. p. 1–58. In: B.J. Miflin (Ed). Oxford Surveys of Plant Molecular and Cell Biology, Vol. 7. Oxford University Press.

    Google Scholar 

  • Karp, A., 1992. The role of growth regulators in somaclonal varia-tion. British Society for Plant Growth Regulation Annual Bulletin No. 2. May 1992, p. 1–9.

    Google Scholar 

  • Karp, A., P. Owen, S.H. Steele, P.J. Bebeli & P.J. Kaltsikes, 1992. Variation in telomeric heterochromatin in somaclones of rye. Genome 35: 590–593.

    Article  Google Scholar 

  • Krishnamurthi, M. & J. Tlaskal, 1974. Fiji disease resistantSaccha-rum officinarum var Pindar subclones from tissue cultures. Proc. Int. Soc. Sugar Cane Technol. 15: 130–137.

    Google Scholar 

  • Larkin, P.J. & W.R. Scowcroft, 1981. Somaclonal variation -a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.

    Article  Google Scholar 

  • Lee, M. & R.L. Phillips, 1988. The chromosomal basis of somaclonal variation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 413–438.

    Article  Google Scholar 

  • Linacero, R. & A.M. Vazquez, 1992. Cytogenetic variation in rye regenerated plants and their progeny. Genome 35: 428–430.

    Article  Google Scholar 

  • Luckett, D.J., D. Rose & E. Knights, 1989. Paucity of somaclonal variation from immature embryo culture of barley. Australian J. Agric. Res. 40: 1155–1159.

    Article  Google Scholar 

  • Marcotrigiano, M. & L. Jagannathan, 1988.Paulownia tomentosa cultivar somaclonal Snowstorm. HortSci. 23: 226–227.

    Google Scholar 

  • Martinez, R.O., M. Monzote, R.S. Herrera, R. Cruz & V. Torrez, 1989. Obtention of king grass(Pennisetum purpureum) clones from tissue culture selection and evaluation of mutants. Proc. XVI International Grassland Congress, Nice, France, 1989.

    Google Scholar 

  • Mathur, A.K., P.S. Ahuja, B. Pandey, A.K. Kukreja & S. Mandal, 1988. Screening and evaluation of somaclonal variation for quan-titative and qualitative traits in an aromatic grass,Cymbopogon winterianus Jowitt. Plant Breed. 101: 321–334.

    Article  Google Scholar 

  • Oono, K., 1978. Test tube breeding of rice by tissue culture. Trop. Agric. Res. Series 11: 109–123.

    Google Scholar 

  • Osifo, E.O., J.K. Webb & G.G. Henshaw, 1989. Variation amongst callus-derived plants of Solanum brevidens. J. Plant Physiol. 134: 1–4.

    Article  Google Scholar 

  • Peschke, V.M. & R.L. Phillips, 1991. Activation of the maize trans-posable element suppressor-mutator (Spm) in tissue culture. The-or. Appl. Genet. 81:90–97.

    Google Scholar 

  • Peschke, V.M., R.L. Phillips & B.G. Gengenbach, 1991 .Genetic and molecular analysis of tissue culture-derived AC elements. Theor. Appl. Genet. 82: 121–129.

    Article  CAS  Google Scholar 

  • Pickering, R.A., 1989. Plant regeneration and variants from calli derived from immature embryos of diploid barley(Hordeum vul- gare) andH. vulgare xH. bulbosum L. crosses. Theor. Appl. Genet. 78: 105–112.

    Article  Google Scholar 

  • Planckaert, F. & V. Walbot, 1989. Molecular and genetic character-ization of Mu transposable elements in Zea mays. Behaviour in callus culture and regenerated plants. Genetics 123: 567–578.

    PubMed  CAS  Google Scholar 

  • Puolimatka, M. & A. Karp, 1993. Meiotic disturbances resulting from tissue culture of inbred and outbred rye. Heredity 71: 138– 144.

    Article  Google Scholar 

  • Qureshi, J.A., P. Hucl & K.K. Kartha, 1992. Is somaclonal variation a reliable tool for spring wheat improvement? Euphytica 60: 221–228.

    Google Scholar 

  • Ray, I.M. & E.T. Bingham, 1991. Inheritance of a mutable phenotype that is activated in alfalfa tissue culture. Genome 34: 35–40.

    Article  Google Scholar 

  • Reed, S.M. & E.A. Wernsmann, 1989. DNA amplification among anther-derived doubled haploid lines of tobacco and its relation-ship to agronomic performance. Crop Sci. 29: 1072–1076.

    Article  Google Scholar 

  • RuĂ­z, M.L., M.I. Rueda, F.J. PelĂ¡ez, M. Espino, M. Candela, A.M. Sendino & A.M. Vazquez, 1992. Somatic embryogenesis, plant regeneration and somaclonal variation in barley. Plant Cell Tissue Organ Culture 28: 97–101.

    Article  Google Scholar 

  • Shepard, J.F., D. Bidney & E. Shahin, 1980. Potato protoplasts in crop improvement. Science 208: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Sibi, M., M. Biglary & Y. Demarly, 1984. Increase in the rate of recombinants in tomato(Lycopersicon esculentum L.) afterin vitro regeneration. Theor. Appl. Genet. 68: 317–321.

    Article  Google Scholar 

  • Singsit, C., R.E. Veilleux & S.B. Sterret, 1990. Enhanced seed set and crossover frequency in regenerated potato plants following anther and callus culture. Genome 33: 50–56.

    Article  Google Scholar 

  • Skirvin, R.M. & J. Janick, 1976. Tissue culture induced variation in scentedPelargonium spp. J. Amer. Soc. Hort. Sci. 101: 281–290.

    Google Scholar 

  • Söndahl, M.R. & A. Bragin, 1991. Somaclonal variation as a breed-ing tool for coffee improvement. ASIC, 14e Coooque, San Fran-cisco, 701–710.

    Google Scholar 

  • Springen, K., 1987. Improving on mother nature. Newsweek 26: 3.

    Google Scholar 

  • Stieve, S.M., D.P. Stimart & B.S., 1992. Heritable tissue culture induced variation inZinnia marylandica. Euphytica 64: 81–89.

    Google Scholar 

  • Varga, A., L.H. Thomas & J. Bruinsma, 1988. Effects of auxins on epigenetic instability of callus-propagatedKalanchoe bloss-feldiana Poelln. Plant Cell Tissue Organ Culture 15: 223–231.

    Article  CAS  Google Scholar 

  • Vuylsteke, D. & R. Swennen, 1990. Somaclonal variation in African plantains. UTA Res. Vol. 1:4–10.

    Google Scholar 

  • Williams, M.E., A.G. Hepburn & J.M. Widholm, 1991. Somaclonal variation in a maize inbred line is not associated with changes in the number or location Ac-homologous sequences. Theor. Appl. Genet. 81: 272–276.

    Article  CAS  Google Scholar 

  • Winfield, M., M.R. Davey & A. Karp, 1993. A comparison of chro-mosome instability in cell suspensions of diploid, tetraploid and hexaploid wheats. Heredity 70: 187–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, A. (1995). Somaclonal variation as a tool for crop improvement. In: Cassells, A.C., Jones, P.W. (eds) The Methodology of Plant Genetic Manipulation: Criteria for Decision Making. Developments in Plant Breeding, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0357-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0357-2_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4159-1

  • Online ISBN: 978-94-011-0357-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics