Skip to main content

Iron Deprivation: Physiology and Gene Regulation

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Iron is an essential redox component of most living organisms. It is particularly important to photoautotrophs, such as cyanobacteria, in which it is a crucial part of the protein complexes involved in photosynthetic electron transport. However, in oxic ecosystems, the low solubility of Fe3+ above neutral pH limits the biological availability of iron to aquatic microorganisms, that must double their iron content with every round of cell division. As a result, cyanobacteria and other microorganisms have evolved a number of responses to cope with frequently occurring conditions of iron deficiency. These responses include a system of genetic regulation that alters the profile of soluble electron carriers in advance of extreme iron deprivation, that induces the synthesis of an efficient iron-scavenging system and that may also differentially control the loss of iron-requiring physiological structures which become expendable during extreme iron deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM and Sanders-Loher J (1986) Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJM1). J Bacteriol 167: 57–65.

    PubMed  CAS  Google Scholar 

  • Alpes I, Sturl E, Scherer S and Böger P (1984) Interaction of photosynthetic and respiratory electron transport in blue-green algae: Effect of a cytochrome c-553 specific antibody. Z Naturforsch 39: 623–626.

    Google Scholar 

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19: 29–32.

    Article  CAS  Google Scholar 

  • Armstrong JE and van Baalen C (1979) Iron transport in microalgae: The isolation and biological activity of a hydroxyamate siderophore from the blue-green algae Agmenellum quadruplicatum. J Gen Microbiol 111: 253–262.

    Article  CAS  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118: 531–537.

    CAS  Google Scholar 

  • Bagg A and Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51: 509–518.

    PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1983) Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium. Arch Biochem Biophy 227: 279–286.

    Article  CAS  Google Scholar 

  • Beale SI and Cornejo J (1984) Enzymic transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga Cyanidium caldarium Plant Physiol 76: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1991) Biosynthesis of phycobilins: Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 266: 22328–22332.

    PubMed  CAS  Google Scholar 

  • Bovy A, de Vreize G, Lugones L, van Horssen P, van den Berg C, Borrias WE and Weisbeek P (1993) Iron-dependent stability of the ferredoxin I transcript from cyanobacterial strains Synechococcus species PCC 7942 and Anabaena species PCC 7937. Mol Microbiol 7: 429–439.

    Article  PubMed  CAS  Google Scholar 

  • Boyer GL, Gillam AH and Trick C (1987) Iron chelation and uptake. In: Fay P and Van Baalen C (ed) The Cyanobacteria, pp 415–436. Elsevier, Amsterdam,.

    Google Scholar 

  • Braun V (1985) The unusual features of the iron transport systems of Escherichia coli. Trends Biochem Sci 10: 75–80.

    Article  CAS  Google Scholar 

  • Braun V and Winkelmann G (1987) Microbial iron transport: Structure and function of siderophores. Prog Clin Biochem Med 5: 67–99.

    Article  Google Scholar 

  • Braun V and Hantke K (1991) Genetics of bacterial iron transport. In: Winkelmann G (ed) CRC Handbook of Microbial Iron Chelates, pp 107–138. CRC Press, Boca Raton.

    Google Scholar 

  • Braun V, Hantke K, Erik-Helmerich K, Koster W, Pressler U, Sauer M, Schaffer S, Schoffler H, Staudenmaier H and Zimmermann L (1987) Iron transport systems in Escherichia coli. In: Winkelmann G, van der Helm D and Neilands JB (ed.) Iron Transport in Microbes, Plants and Animals, pp 35–51. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Braun V, Schaffer S, Hantke K and Tröger W (1990) Regulation of gene expression by iron. In: Hauska G and Thauer R (ed) The Molecular Basis of Bacterial Metabolism, (pp. 164–179) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosynth Res 24: 1–13.

    Article  CAS  Google Scholar 

  • Brown CM and Trick CG (1992) Response of the cyanobacterium, Oscillatoria tenius to low iron environments: The effect on growth rate and evidence for siderophore production. Arch Microbiol 157: 349–354.

    Article  CAS  Google Scholar 

  • Bryant DA (1986) The cyanobacterial photosynthetic apparatus: Comparisons to those of higher plants and photosynthetic bacteria. In: Platt T and Li WKW (ed) Photosynthetic Picoplankton. Can J Fisheries Aquat Sci, Vol 214: 423-500

    Google Scholar 

  • Bryant DA (1992) Molecular biology of Photosystem I. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 501–549. Elsevier, Amsterdam.

    Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein of iron-deficient Synechococcus sp. PCC 942 (CP43′) is encoded by the isiA gene. Plant Physiol 103: 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Burnham BF and Neilands JB (1961) Studies on the metabolic function of the ferrichrome compounds. J Biol Chem 236: 554–559.

    PubMed  CAS  Google Scholar 

  • Calderwood SB and Mekalanos JJ (1988) Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170: 1015–1017.

    PubMed  CAS  Google Scholar 

  • Chitnis PR and Nelson N (1991) Photosystem I. In: Bogorad L and Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, pp 177–224. Academic Press, San Diego.

    Google Scholar 

  • Clarke SE, Stuart J and Sanders-Loehr J (1987) Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl Environ Microbiol 53: 917–922.

    PubMed  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53: 517–530.

    PubMed  CAS  Google Scholar 

  • Csaky TZ (1948) On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2: 450–454.

    Article  CAS  Google Scholar 

  • Danelius RV, Satoh K, van Kan PJM, Plijter JJ, Nuijs AM and van Gorkom HJ (1987) The primary reaction of Photosystem II in the D1-D2-cytochrome 6559 complex. FEBS Lett 213: 241–244.

    Article  Google Scholar 

  • de Lorenzo V, Wee S, Herrero M and Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid Col V-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169: 2624–2630.

    PubMed  Google Scholar 

  • de Lorenzo V, Giovannini F, Herrero M and Neilands JB (1988) Metal ion regulation of gene expression: Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol 203: 875–884.

    Article  PubMed  Google Scholar 

  • Dean CR and Poole K (1993) Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. J Bacteriol 175: 317–324.

    PubMed  CAS  Google Scholar 

  • Douglas D, Peat A and Whitton BA (1986) Influence of iron status on structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47: 155–165.

    CAS  Google Scholar 

  • Eng-Wilmot DL and Martin DF (1979) Uptake of iron by Gomphosphaeria aponina, a possible control organism for the Florida red tide Pytochodiscus brevis. Microbios 26: 103–113.

    PubMed  CAS  Google Scholar 

  • Entsch B and Smillie RM (1972) Oxidation-reduction properties of phytoflavin, a flavoprotein from blue-green algae. Arch Biochem Biophy 151: 378–386.

    Article  CAS  Google Scholar 

  • Estep M, Armstrong JE and van Baalen C (1975) Evidence for the occurrence of specific iron (III)-binding compounds in near-shore marine ecosystems. App Microbiol 30: 186–188.

    CAS  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira F and Straus NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6: in press.

    Google Scholar 

  • Fillat MF, Borrias WE and Weisbeek PJ (1991) Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J 280: 187–191.

    PubMed  CAS  Google Scholar 

  • Gasparich GE (1989) The Effects of Various Environmental Stress Conditions on Gene Expression in the Cyanobacterium Synechococcus sp. PCC 7002. Ph. D. thesis, The Pennsylvania State University.

    Google Scholar 

  • Ghanotakis DF, de Paula JC, Demetriou DM, Bowlby NR, Petersen J, Babcock GT and Yocum CF (1989) Isolation and characterization of the 47 kDa protein and the D1-D2-cytochrome 6-559 complex. Biochim Biophys Acta 974: 44–53.

    Article  PubMed  CAS  Google Scholar 

  • Gillam AH, Lewis AG and Andersen RJ (1981) Quantitative determination of hydroxamic acids. Anal Chem 53: 841–844.

    Article  CAS  Google Scholar 

  • Gingrich JC, Gasparich GE, Sauer K and Bryant DA (1990) Nucleotide sequence and expression of the two genes encoding D2 protein and the single gene encoding the CP43 protein of Photosystem II in the cyanobacterium Synechococcus sp. PCC 7002. Photosynth Res 24: 137–150.

    CAS  Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current Topics in Bioenergetics, Vol 16, pp 83–177. Academic, New York.

    Chapter  Google Scholar 

  • Goldberg MB, Boyko SA and Calderwood SB (1990) Transcription regulation by iron of a Vibrio cholerae virulence gene and homology of the gene to the Escherichia coli Fur system. J Bacteriol 172: 6863–6870.

    PubMed  CAS  Google Scholar 

  • Golden SS and Stearns GW (1988) Nucleotide sequence and transcript analysis of three Photosystem II genes from the cyanobacterium Synechococcus sp. PCC 7942. Gene 67: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Goldman SJ, Lammers PJ, Berman MS and Sanders-Loehr J (1983) Siderophore-mediated iron uptake in different strains of Anabaena sp. J Bacteriol 156: 1144–1150.

    PubMed  CAS  Google Scholar 

  • Gounaris K, Chapman DJ and Barber J (1989) Isolation and characterization of a D1/D2/cytochrome 6-559 complex from Synechocystis 6803. Biochim Biophys Acta 973: 296–301.

    Article  CAS  Google Scholar 

  • Griggs DW and Konisky J (1989) Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of Fur protein to the promoters. J Bacteriol 171: 1048–1054.

    PubMed  CAS  Google Scholar 

  • Guikema JA (1985) Fluorescence induction characteristics of Anacystis nidulans during recovery from iron deficiency. J Plant Nutr 8: 891–908.

    Article  CAS  Google Scholar 

  • Guikema JA and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Guikema JA and Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74: 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Gounaris K, Chapman DJ and Barber J (1989) Isolation and characterization of a D1/D2/cytochrome b-559 complex from Synechocystis 6803. Biochim Biophys Acta 973: 296–301.

    Article  CAS  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: Isolation of a constitutive mutant. Mol Gen Genet 182: 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1984) Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197: 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Hardie LP, Balkwill DL and Stevens SE Jr (1983a) Effects of iron starvation on the physiology of the cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol 45: 999–1006.

    PubMed  CAS  Google Scholar 

  • Hardie LP, Balkwill DL and Stevens SE Jr (1983b) Effects of iron starvation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol 45: 1007–1017.

    PubMed  CAS  Google Scholar 

  • Hassan HM and Sun HH (1992) Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Proc Natl Acad Sci USA 89: 3217–3221.

    Article  PubMed  CAS  Google Scholar 

  • Hauska G (1985) Organization and function of cytochrome b 6 f/bc 1 complexes. In: Steinback KE, Bonitz S, Arntzen C and Bogorad L (ed) Molecular Biology of the Photosynthetic Apparatus, pp. 79–87. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Hauska G, Hurt E, Gabellini N and Lockau W (1983) Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. Biochim Biophys Acta 726: 97–133.

    Article  PubMed  CAS  Google Scholar 

  • Henderson N, Austin S and Dixon RA (1989) Role of metal ions in negative regulation of nitrogen fixation by the nifL gene product from Klebsiella pneumoniae. Mol Gen Genet 216: 484–491.

    Article  CAS  Google Scholar 

  • Hider RC (1984) Siderophore mediated absorption of iron. Struct Bonding 58: 25–88.

    Article  CAS  Google Scholar 

  • Hurt EC, Hauska G and Shahak Y (1982) Electrogenic proton translocation by the chloroplast cytochrome b 6/f complex reconstituted into phospholipid vesicles. FEBS Lett 149: 211–216.

    Article  CAS  Google Scholar 

  • Hutber GN, Hutson KG and Rogers LJ (1977) Effect of iron deficiency on levels of two ferredoxins and flavodoxins in a cyanobacterium. FEMS Microbiol Lett 1: 193–196.

    Article  CAS  Google Scholar 

  • Hutchins DA, Rueter JG and Fish W (1991) Siderophore production and nitrogen fixation are mutually exclusive strategies in Anabaena 7120. Limnol Oceanogr 36: 1–12.

    Article  CAS  Google Scholar 

  • Kerry A, Laudenbach DE and Trick CG (1988) Influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. J Phycol 24: 566–571.

    CAS  Google Scholar 

  • Lange W (1974) Chelating agents and blue-green algae. Can J Microbiol 20: 1311–1321.

    Article  CAS  Google Scholar 

  • Laudenbach DE and Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170: 5018–5026.

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Reith ME and Straus NA (1988) Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol 170: 258–264.

    PubMed  CAS  Google Scholar 

  • Leonhardt KG and Straus NA (1989) Sequence of flavodoxin from Anabaena variabilis 7120. Nucleic Acids Research 17: 4384.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt KG and Straus NA (1992) An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002. J Gen Microbiol 138: 1613–1621.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt K and Straus NA (1994) Photosystem II genes isiA, psbDI and psbC in Anabaena sp. PCC 7120: Cloning, sequencing and transcriptional regulation in iron-stressed and iron-replete cells. Plant Mol Biol 24: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In. Winkelmann G (ed) CRC Handbook of Microbial Iron Chelates, pp. 15–64. CRC Press, Boca Raton.

    Google Scholar 

  • Mahasneh IA (1991) Siderophore production in the Rivulariaceae, blue-green algae. Microbios 65: 97–104.

    Google Scholar 

  • Mayhem SG and Ludwig ML (1975) Flavodoxins and electron transferring flavoproteins. Enzymes (3rd Ed) 12: 57–118.

    Article  Google Scholar 

  • McCarter L and Silverman M (1989) Iron regulation of s warmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 171: 731–736.

    PubMed  CAS  Google Scholar 

  • McKnight DM and Morel FMM (1979) Release of weak and strong copper-complexing agents by algae. Limnol Oceanogr 24: 823–837.

    Article  CAS  Google Scholar 

  • McKnight DM and Morel FMM (1980) Copper complexation by siderophores from filamentous blue-green algae. Limnol Oceanogr 25: 62–71.

    Article  CAS  Google Scholar 

  • Miyazaki A, Shina T, Toyoshima Y, Gounaris K and Barber J (1989) Stoichiometry of cytochrome 6-559 in Photosystem II. Biochim Biophys Acta 975: 142–147.

    Article  CAS  Google Scholar 

  • Murphy TP, Lean DRS and Nalewajko C (1976) Blue-green algae: Their excretion of iron-selective chelators enables them to dominate other algae. Science 192: 900–902.

    Article  PubMed  CAS  Google Scholar 

  • Murphy TP, Hall KJ and Yesaki I (1983) Biogenic regulation of iron availability in an eutrophic hardwater lake. Sci Total Environ 28: 37–50.

    Article  CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome 6-559. Proc Natl Acad Sci USA 84: 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1981a) Microbial iron compounds. Ann Rev Biochem 50: 715–731.

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1981b) Iron absorption and transport in microorganisms. Ann Rev Nutr 1: 27–46.

    Article  CAS  Google Scholar 

  • Neilands JB (1982) Microbial envelope proteins related to iron. Ann Rev Microbiol 36: 285–309.

    Article  CAS  Google Scholar 

  • Neilands JB (1984) Methodology of siderophores. Struct Bonding 58: 1–24.

    Article  CAS  Google Scholar 

  • Niederhoffer EC, Naranjo CM and Fee JA (1989) Relationship of superoxide dismutase genes, sodA and sodB, to the iron uptake (fur) regulon in Escherichia coli K-12. In: Hamer DN and Winge DR (ed) Metal Ion Homeostasis: Molecular Biology and Chemistry, pp 149–158. Liss, New York.

    Google Scholar 

  • Niederhoffer EC, Naranjo CM, Bradley KL and Fee JA (1990) Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol 172: 1930–1938.

    PubMed  CAS  Google Scholar 

  • Öquist G (1971) Changes in pigment composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans. Physiol Plant 25: 188–191.

    Article  Google Scholar 

  • Öquist G (1974a) Iron deficiency in the blue-green alga Anacystis nidulans: Changes in pigmentation and photosynthesis. Physiol Plant 30: 30–37.

    Article  Google Scholar 

  • Öquist G (1974b) Iron deficiency in the blue-green alga Anacystis nidulans: Fluorescence and absorption spectra recorded at 77° K. Physiol Plant 31: 55–58.

    Article  Google Scholar 

  • Pakrasi HB, Riethman HC and Sherman LA (1985) Organization of pigment proteins in the Photosystem II complex of the cyanobacterium Anacystis nidulans R2. Proc Natl Acad Sci USA 82: 6903–6907.

    Article  PubMed  CAS  Google Scholar 

  • Pakrasi HB, Williams JGK and Arntzen CJ (1988) Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: Evidence for a functional role of cytochrome 6-559 in Photosystem II. EMBO J. 7: 325–332.

    PubMed  CAS  Google Scholar 

  • Pakrasi HB, Diner BA, Williams JGK and Arntzen CJ (1989) Deletion mutagenesis of the cytochrome 6-559 protein inactivates the reaction center of Photosystem II. Plant Cell 1: 591–597.

    PubMed  CAS  Google Scholar 

  • Pardo MB, Gomez-Moreno C and Peleato ML (1990) Effect of iron deficiency on ferredoxin levels in Anabaena variabilis PCC 6309. Arch Microbiol 153: 528–530.

    Article  CAS  Google Scholar 

  • Peschek GA (1979) Nitrate and nitrite reductase and hydrogenase in Anacystis nidulans grown in Fe-and Mo-deficient media. FEMS Microbiol Lett 6: 371–374.

    Article  CAS  Google Scholar 

  • Peschek GA and Schmetterer G (1982) Evidence for plastocytochrome f/b-563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochem Biophys Res Comm 108: 1188–1195.

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Muller G and Matzanke BF (1984) Complexation of iron by siderophores: A review of their solution and structural chemistry and biological function. Topics Curr Chem 123: 49–102.

    Article  CAS  Google Scholar 

  • Reddy KJ, Bullerjahn GS, Sherman DM and Sherman LA (1988) Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol 170: 4466–4476.

    PubMed  CAS  Google Scholar 

  • Reith ME, Laudenbach DE and Straus NA (1986) Isolation and nucleotide sequence analysis of the ferredoxin I gene from the cyanobacterium Anacystis nidulans R2. J Bacteriol 168: 1319–1324.

    PubMed  CAS  Google Scholar 

  • Rhie G and Beale SI (1992) Biosynthesis of phycobilins: Ferredoxin-supported NADPH-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J Biol Chem 267: 16088–16093.

    PubMed  CAS  Google Scholar 

  • Riethman HC and Sherman LA (1988a) Immunological characterization of iron-regulated membrane proteins in the cyanobacterium Anacystis nidulans R2. Plant Physiol 88: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Riethman HC and Sherman LA (1988b) Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta 935: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Rioux C, Jordan DC and Rattray JBM (1983) Colorimetric determination of catechol siderophores in microbial cultures. Anal Biochem 133: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Rögner M, Chisholm DA and Diner BA (1991) Site-directed mutagenesis of the psbC gene of Photosystem II: Isolation and functional characterization of CP43-less Photosystem II core complexes. Biochemistry 30: 5387–5395.

    Article  PubMed  Google Scholar 

  • Sandmann G (1985) Consequences of iron deficiency on photosynthetic electron transport in blue green algae. Photosynth Res 6: 261–271.

    Article  CAS  Google Scholar 

  • Sandmann G and Malkin R (1983) Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron-deficient cultures of the blue-green alga Aphanocapsa. Plant Physiol 73: 724–728.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G, Peleato ML, Fillat MF, Lazaro MC and Gomez-Moreno C (1990) Consequences of iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and nitrogen fixation on Anabaena strains. Photosynth Res 119–125.

    Google Scholar 

  • Scanlan DJ, Mann NH and Carr NG (1989) Effect of iron and other nutrient limitations on the pattern of outer membrane proteins in the cyanobacterium Synechococcus PCC7942. Arch Microbiol. 152: 224–228.

    Article  CAS  Google Scholar 

  • Schaffer S, Hantke K and Braun V (1985) Nucleotide sequence of iron regulatory gene/wr. Mol Gen Genet 200: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Sherman DM and Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156: 393–401.

    PubMed  CAS  Google Scholar 

  • Simpson FB and Neilands JB (1976) Siderochromes in Cyanophyceae: Isolation and characterization of schizokinen from Anabaena sp. J Phycol 12: 44–48.

    Google Scholar 

  • Smillie RM (1965a) Isolation of phytoflavin, a flavoprotein with chloroplast ferredoxin activity. Plant Physiol 40: 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  • Smillie RM (1965b) Isolation of two proteins with chloroplast ferredoxin activity from a blue-green alga. Biochem Biophys Res Comm 20: 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Hansson O, Mathis P and Satoh K (1987) Primary radical pair in the Photosystem II reaction center. Biochim Biophys Acta 893 49–59.

    Article  CAS  Google Scholar 

  • Tollin G and Edmondson DE (1980) Purification and properties of flavodoxins. Meth Enzymol 69: 392–406.

    Article  CAS  Google Scholar 

  • Trick CG and Kerry A (1992) Isolation and purification of siderophores produced by cyanobacteria, Synechococcus sp. PCC 7942 and Anabaena variabilis ATCC 29413. Curr Microbiol 24: 241–245.

    Article  CAS  Google Scholar 

  • Troxler RF, Lin S and Offner GD (1989) Heme regulates expression of phycobiliprotein photogenes in the unicellular Rodophyte, Cyanidium caldarium. J Biol Chem 264: 20596–20601.

    PubMed  CAS  Google Scholar 

  • Uphoff TS and Welch RA (1990) Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol 172: 1206–1216.

    PubMed  CAS  Google Scholar 

  • Van den Berg CMG, Wong PTS and Chau YK (1979) Measurement of complexing materials excreted from algae and their ability to ameliorate copper toxicity. J Fish Res Bd Can 36: 901–905.

    Article  Google Scholar 

  • Van der Pias J, De Groot RP, Woortman MR, Weisbeek PJ and Van Arkel GA (1986) Coding sequence of a ferredoxin gene from Anacystis nidulans R2 (Synechococcus PCC 7942). Nucleic Acids Res 14: 7804.

    Article  Google Scholar 

  • Van der Plas J, de Groot R, Woortman FC, Borrias M, Van Arkel G and Weisbeek P (1988) Genes encoding ferredoxins from Anabaena sp. PCC 7937 and Synechococcus sp. PCC 7942: Structure and regulation. Photosynth Res 18: 179–204.

    Article  Google Scholar 

  • Vermaas WFJ and Ikeuchi M (1991) Photosystem IL In: Bogorad L and Vasil IK (ed) The Photosynthetic Apparatus: Molecular Biology and Operation, pp 25–111. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Vermaas WFJ, Ikeuchi M and Inoue Y (1988) Protein composition of the Photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 17: 97–113.

    Article  CAS  Google Scholar 

  • Wee S, Neilands JB, Bittner ML, Hemming BC, Haymore BL and Seetharam R (1988) Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli) K12. Biol Metals 1: 62–68.

    Article  CAS  Google Scholar 

  • Winkelmann G (1991) Specificity of iron transport in bacteria and fungi. In: Winkelmann G (ed) CRC Handbook of Microbial Iron Chelates, pp 65–105. CRC Press, Bacon Raton.

    Google Scholar 

  • Yamaguchi N, Takahashi Y and Satoh K (1988) Isolation and characterization of a Photosystem II core complex depleted in the 43 kDa-chlorophyll-binding subunit. Plant Cell Physiol 29: 123–129.

    CAS  Google Scholar 

  • Yoch DC and Valentine RC (1972) Ferredoxins and flavodoxins of bacteria. Ann Rev Microbiol 26: 41–51.

    Article  Google Scholar 

  • Yu J and Vermaas WFJ (1990) Transcript levels and synthesis of Phptosystem II components in cyanobacterial mutants with inactivated Photosystem II genes. Plant Cell 2: 315–322.

    PubMed  CAS  Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R and Bryant DA (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002. J Biol Chem 267: 16138–16145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Straus, N.A. (1994). Iron Deprivation: Physiology and Gene Regulation. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics