PLANT CELL WALLS

PLANT CELL WALLS

Edited by

N.C. CARPITA

Dept. Botany & Plant Pathology Purdue University, West Lafayette, IN, USA

M. CAMPBELL

Dept. Plant Sciences University of Oxford, Oxford, UK

and

M. TIERNEY Dept. Botany University of Vermont, Burlington, VT, USA

Reprinted from Plant Molecular Biology, Volume 47 (I, II), 2001

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress

Library of Congress Catalogue-in-Publication Data

Plant cell walls / edited by Nicholas C. Carpita, Malcolm Campbell and Mary Tierney

p. cm. Includes bibliographical references (p.). ISBN 978-94-010-3861-4 ISBN 978-94-010-0668-2 (eBook) DOI 10.1007/978-94-010-0668-2 1. Plant cell walls. I. Carpita, Nicholas C. II. Campbell, Malcolm. III. Tierney, Mary.

QK725.P558 2001 571.6'82-dc21

2001046208

Printed on acid-free paper

All Rights Reserved

©2001 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2001 Softcover reprint of the hardcover 1st edition No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

CONTENTS

Overview	
Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics	
N. Carpita, M. Tierney, M. Campbell	1–5
Section 1 – Cytology and metabolism	
Pectin: cell biology and prospects for functional analysis W.G.T. Willats, L. McCartney, W. Mackie, J.P. Knox	9–27
Carbon partitioning to cellulose synthesis C.H. Haigler, M. Ivanova-Datcheva, P.S. Hogan, V.V. Salnikov, S. Hwang, K. Martin, D.P. Delmer	29–51
Section 2 – Gene and protein structure	
A census of carbohydrate-active enzymes in the genome of <i>Arabidopsis thaliana</i> B. Henrissat, P.M. Coutinho, G.J. Davies	55–72
Structure function relationships of β -D-glucan endo- and exohydrolases from higher plants	
M. Hrmova, G.B. Fincher	73–91
Section 3 – Primary wall synthesis	
Molecular genetics of nucleotide sugar interconversion pathways in plants WD. Reiter, G.F. Vanzin	95–113
Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era	
R. Perrin, C. Wilkerson, K. Keegstra	115–130
T.A. Richmond, C.R. Somerville	131–143
β -D-Glycan synthases and the <i>CesA</i> gene family: lessons to be learned from the mixed- linkage (1 \rightarrow 3), (1 \rightarrow 4) β -D-glucan synthase C.E. Vergara, N.C. Carpita	145–160
The complex structures of arabinogalactan-proteins and the journey towards under- standing function	161_176
T. Gaopai, N.E. Johnson, N.A. Monorina, A. Daolo, O.J. Johanz	101-170
Section 4 – Growth, signaling & defense	
The molecular basis of plant cell wall extension C.P. Darley, A.M. Forrester, S.J. McQueen-Mason	179–195

WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix	
C.M. Anderson, T.A. Wagner, M. Perret, ZH. He, D. He, B.D. Kohorn	197–206
Section 5 – Secondary wall synthesis	
Mutations of the secondary cell wall	
S.R. Turner, N. Taylor, L. Jones	209–219
Differential expression of cell-wall-related genes during the formation of tracheary elements in the <i>Zinnia</i> mesophyll cell system	
D. Milioni, PE. Sado, N.J. Stacey, C. Domingo, K. Roberts, M.C. McCann	221–238
Unravelling cell wall formation in the woody dicot stem	
E.J. Mellerowicz, M. Baucher, B. Sundberg, W. Boerjan	239–274
Functional genomics and cell wall biosynthesis in loblolly pine	
R. Whetten, YH. Sun, Y. Zhang, R. Sederoff	275–291
Section 6 – Cell wall biotechnology	
Enabling technologies for manipulating multiple genes on complex pathways C. Halpin, A. Barakate, B.M. Askari, J.C. Abbott, M.D. Ryan	295–310
Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants	
D.A. Brummell, M.H. Harpster	311–340

Cover illustration

A functionally important aspect of the *in muro* modification of the pectic matrix is the regulation of the degree and pattern of methyl esterification of the homogalactouronan (HG) backbone. The image shows a junction between three tobacco stem cortical cells that have been immunolabelled with the monoclonal antibodies LM7 (red) and PAM1 (green) and stained with the cellulose-binding reagent Calcofluor (blue). PAM1 and LM7 are methylester pattern-specific antibodies and bind to unesterified and partially methylesterified HG respectively. In this issue, both antibodies bind to a region of cell wall that lines intercellular spaces, but the discrete locations of LM7 and PAM1 labelling indicates that the distribution pattern of methylesters along the HG backbone is differentially regulated within cell wall microdomains. (Courtesy of Willats *et al.*, Centre of Plant Sciences, Leeds, UK)