Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 96))

Abstract

Our understanding of the mechanisms of sulphate and phosphate transport in plants has advanced considerably in recent years as a result of the application of molecular techniques in nutritional physiology. Genes encoding the transporters involved in the uptake of sulphate and phosphate by plant roots and the distribution of these anions throughout the plant have been identified. Many of these genes have been characterised, their regulatory systems studied and, for some, the tissues in which they are expressed delineated. This information is providing important clues about the roles of these genes. Most work to date has been done on the sulphate and phosphate transporters that are found in roots. These transporters are SO4 2−/H+ or H2PO4 +/H+ symporters. The expression of the genes that encode these transporters in roots is transcriptionally regulated by feedback signals that respond to the sulphate or phosphate status of the plant. However, there is evidence that genes encoding high-affinity sulphate transporters can also be regulated by nutrient demand and the availability of precursors needed for sulphur assimilation. Genes encoding high-affinity sulphate and phosphate transporters are expressed in cells in close contact with soil solution, especially epidermal cells with their associated root hairs. Genes encoding other lower-affinity transporters are expressed in cells associated with the vascular system where they play a role in the internal redistribution of sulphate or phosphate. Transgenic plants in which genes encoding sulphate or phosphate transporters are over-expressed are now emerging from transformation programs. Data from these studies, together with some thoughts on possible implications of this technology for genetic improvement of commercial crop plants will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bun-ya M., Nishimura M, Harashima S and Oshima Y 1991 The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Molec. and Cell. Biol. 11, 3229–3238.

    CAS  Google Scholar 

  • Bun-ya M, Harashima S and Oshima Y 1992 Putative GTP-binding protein, Grtl, associated with the function of the PHO84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2958–2966.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S and Oshima Y 1996 Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 29, 344–351.

    CAS  PubMed  Google Scholar 

  • Burleigh S H and Harrison M J 1997 A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol. Biol. 34, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Burleigh S H and Harrison M J 1999 The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119, 241–248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W and Surdin-Kerjan Y 1997 Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145, 627–635.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarkson DT 1993 Roots and the delivery of solutes to the xylem. Phil. Trans. R. Soc. London B 341, 5–17.

    Article  Google Scholar 

  • Clarkson D T and Lüttge U 1991 Mineral nutrition: inducible and repressible nutrient transport systems. Prog. Bot. 52, 61–83.

    Article  Google Scholar 

  • Clarkson D T and Scattergood C B 1982 Growth and phosphate transport in barley and tomato plants during development of and recovery from phosphate stress. J. Exp. Bot. 33, 865–875.

    Article  CAS  Google Scholar 

  • Clarkson D T, Smith F W and Vanden Berg P J 1983 regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum cv. Siratro. J. Exp. Bot. 34, 1463–1483.

    Article  CAS  Google Scholar 

  • Cogliatti D H and Clarkson D T 1983 Physiological changes in phosphate uptake by potato plants during development of and recovery from phosphate deficiency. Physiol. Plant. 58, 287–294.

    Article  CAS  Google Scholar 

  • Daram P, Brunner S, Persson B L, Amrhein N and Bucher M 1998 Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N and Bücher M 1999 Pht2;l encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11, 2153–2166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaize E and Randall P 1995 Characterisation of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 107, 207–213.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong B, Rengel, Z and Delhaize E 1998 Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205, 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Drew MC and Saker LR 1984 Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of allosteric regulation. Planta 160, 500–507.

    Article  CAS  PubMed  Google Scholar 

  • Epstein E 1953 Mechanism of ion absorption by roots. Nature 171, 83–84.

    Article  CAS  PubMed  Google Scholar 

  • Epstein E and Hagen C E 1952 A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer K, Arbinger B, Kammerer B, Busch C, Brink S, Wallmeier H, Sauer N, Eckerskorn C and Flügge U I 1994 Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3-and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J. 5, 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausier R E and Flügge U I 1997 A new class of plastidic phosphate translocators: A putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9, 453–462.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison M J 1999 Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361–389.

    Article  CAS  PubMed  Google Scholar 

  • Harrison M J and van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford M J 2000 Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve Sutilisation efficiency. J. Exper. Bot. 51, 131–138.

    Article  CAS  Google Scholar 

  • Hawkesford M J and Smith F W 1997a Molecular biology of higher plant sulphate transporters. In Sulphur Metabolism in Higher Plants. Eds W J Cram, L J De Kok, I Stulen, C Brunold and H Rennenberg. pp. 13–25. Backhuys Publishers, Leiden.

    Google Scholar 

  • Hawkesford M J and Smith F W 1997b Structure and function of two higher plant sulfate transporters. In Plant Nutrition — for Sustainable Food Production and Envronment. Eds. T Ando et al. pp. 233–234 Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Kai M, Masuda Y, Kikuchi Y, Osaka M and Tadano T 1997 Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci. Plant Nutr. 83, 227–235.

    Article  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A and Flügge U I 1998 Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouchi H and Hata S 1993 Isolation and characterisation of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol. Gen. Genet. 238, 106–119.

    CAS  PubMed  Google Scholar 

  • Lappartient A G, Vidmar J J, Leustek T, Glass A D M and Touraine B 1999 Inter-organ signalling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J. 18, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre D D and Glass A D M 1982 Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction in influx with provision of orthophosphate. Physiol. Plant. 54, 199–206.

    Article  CAS  Google Scholar 

  • Leggewie G, Willmitzer L and Reismeier J W 1997 Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9, 381–392.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Muchhal U S, Uthappa M, Kononowicz A K and Raghothama K G. 1998a Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 1191–99.

    Google Scholar 

  • Liu H, Trieu A T, Blaycock L A and Harrison M J. 1998b Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorhizal (AM) fungi. Mol Plant-Microbe Interact. 11, 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Martinez de la Vega O Guevara-Garcia A and Herrera-Estrella L 2000 Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotech. 18, 450–453.

    Article  CAS  Google Scholar 

  • Marger N D and Saier M H 1993 A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 18, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Martinez P and Persson B L 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258, 628–638.

    Article  CAS  PubMed  Google Scholar 

  • Mimura T 1995 Homeostasis and transport of inorganic phosphate transport in plants. Plant Cell Physiol. 36, 1–7.

    CAS  Google Scholar 

  • Mimura T 1999 Regulation of phosphate transport and homeostasis in plant cells. Int. Rev. Cytol. 191, 149–200.

    Article  CAS  Google Scholar 

  • Mimura T, Yin Z-H, Wirth E and Dietz K-J 1992 Phosphate transport and apoplastic phosphate homeostasis in barley leaves. Plant Cell Physiol. 33, 563–568.

    CAS  Google Scholar 

  • Mitsukawa N, Okumura S and Shibata D 1997a High-affinity phosphate transporter genes of Arabidopsis thaliana. In Plant nutrition — for Sustainable Food Production and Environment. Ed. T Ando et al. pp. 187–190. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S and Shibata D 1997b Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad Sci. USA 94, 7098–7102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muchhal U S and Raghothama K G 1999 Transcriptional regulation of plant phosphate transporters. Proc. Natl. Acad. Sci USA 96, 5868–5872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muchhal U S, Pardo J M and Raghothama K G 1996 Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93, 10519–10523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng A.Y-N, Blomstedt C K, Gianello R, Hamill J D, Neale A D and Gaff D F 1996 Isolation and characterisation of a lowly expressed cDNA from the resurrection grass Sporobolus stapfianus with homology to eukaryote sulfate transporter proteins (Accession No. X96761) (PGR96-032). Plant Physiol. 111, 651.

    Article  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y and Shibata D 1998 Phosphate transporter gene family of Arabidopsis thaliana. DNA Res. 5, 261–269

    Article  CAS  PubMed  Google Scholar 

  • Pao S S, Paulsen I T and Saier M H 1998 Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poirier Y, Thomas S, Somerville C and Scheifelbein J 1991 A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97, 1087–11093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhagothama K G 1999 Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.

    Article  Google Scholar 

  • Rhagothama K G 2000 Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182–187.

    Article  Google Scholar 

  • Rosewarne G M, Barker S J, Smith S E, Smith F A and Schachtman D P 1999 A Lycopersicon esculentum phosphate transporter (LePTI) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol. 144, 507–516.

    Article  CAS  Google Scholar 

  • Sakano K, Yasaki Y and Mimura T 1992 Cytoplasmic acidification induced by inorganic phosphate uptake in suspension cultured Catharanthus roseus cells. Plant Physiol. 108, 295–302.

    Google Scholar 

  • Saier M H and Reizer J 1991 Families and superfamilies of transport proteins common to prokaryotes and eukaryotes. Curr. Opin. Struct. Biol. 1, 362–368.

    Article  CAS  Google Scholar 

  • Saito K 2000 Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr. Opin. Plant Biol. 3, 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Smith F W, Hawkesford M J, Prosser I M and Clarkson D T 1995a Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol. Gen. Genet. 247, 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Smith F W, Ealing P M, Hawkesford M J and Clarkson D T 1995b Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci USA 92, 9373–9377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith F W, Ealing P M, Dong B and Delhaize E. 1997a The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Smith F W, Hawkesford M J, Ealing P M, Clarkson D T, Vanden Berg P J. Belcher A R and Warrilow A G S 1997b Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J. 12, 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Smith F W 1999 Molecular biology of nutrient transporters in plant membranes. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications. Ed Z Rengel. pp 67–89. Haworth Press, Binghamton.

    Google Scholar 

  • Smith F W, Cybinski D and Rae A L 1999 Regulation of expression of genes encoding phosphate transporters in barley roots. In ‘Plant Nutrition — Molecular Biology and Genetics’ Eds. G Gissel-Nielsen and A Jensen, pp 145–150. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Smith F W, Rae A L and Hawkesford M J 2000 Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Sasakura N, Noji M and Saito K 1996 Isolation and characterisation of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett. 392, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J, Engler G, Van Montagu M and Saito K 1997 Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate starved roots plays a central role m Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 11102–11107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Asanuma W and Saito K 1999a Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulfate transporter isoform. J. Exp. Bot. 50, 1713–14

    CAS  Google Scholar 

  • Takahashi H, Sasakura N, Kimura A, Watanabe A and Saito K 1999b Identification of two leaf specific transporters in Arabidopsis thaliana (Accession No AB 12048 and AB004060) (PGR99-154). Plant Physiol. 121, 686.

    Article  Google Scholar 

  • Takahashi, H, Watanabe A, Smith, F W, Blake-Kalff M. Hawkesford M J and Saito K 2000 The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis. Plant J. 23, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Ulrich C I and Novacky A J 1992 Extra and intracellular pH and membrane potential changes induced by K+, Cl- H2PO4 -and NO3 - uptake and fusicoccon in root hairs of Limnobium stoloniferum. Plant Physiol. 94, 1561–1567.

    Article  Google Scholar 

  • Vidmar J J, Schoerring J K, Touraine B and Glass A D M 1999 Regulation of the HVST1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol. Biol. 40, 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Weinglass A B and Kaback H R 2000 The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc. Natl. Acad. Sci USA 97, 8938–8943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi P, Nakamura T, Harada E, Koizumi N and Sano N 1997 Isolation and characterisation of a cDNA encoding a sulfate transporter from Arabidopsis thaliana (Accession No. D89631) (PGR97-051). Plant Physiol. 113, 1463.

    Article  Google Scholar 

  • Yompakdee C, Bun-ya M, Shikata K, Ogawa N, Harashima S and Oshima Y 1996a A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae. Gene, 171: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Yompakdee C, Ogawa N, Harashima S and Oshima Y 1996b A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 251, 580–590.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David S. Powlson Geoff L. Bateman Keith G. Davies John L. Gaunt Penny R. Hirsch

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, F.W. (2002). Sulphur and phosphorus transport systems in plants. In: Powlson, D.S., Bateman, G.L., Davies, K.G., Gaunt, J.L., Hirsch, P.R. (eds) Interactions in the Root Environment: An Integrated Approach. Developments in Plant and Soil Sciences, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0566-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0566-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3925-3

  • Online ISBN: 978-94-010-0566-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics