Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

The Dynamic Mechanical Analysis (DMA) is a powerful thermal analysis technique, which allows to detect phase transitions and relaxation processes in a variety of materials. With this technique, the solid-state rheological properties of viscoelastic materials can be characterised over a wide range of temperature and frequencies. This chapter summarizes the principles and the capabilities of the DMA technique focusing on its uses on polymeric-based systems aimed to medical and environmental applications. The examples presented include the materials that have been investigated in our research group in the last few years, such as starch-based blends, proteins, polyethylenes, and composites thereof, among other materials. These newly developed biomaterials are being proposed for a range of biomedicai applications that go from fracture replacement/fixation and tissue engineering scaffolding, to new partially degradable bone cements and hydrogels, carriers for controlled release of drugs and growth factors and new wound dressings and membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, D. S. (1999) Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedicai significance, Internat. J. Pharmac. 179, 167–178.

    Article  CAS  Google Scholar 

  2. McCrum, N. G., Read, B. E. and Williams, G. (1991) Anelastic and Dielectric Effects in Polymer Solids, Dover, New York.

    Google Scholar 

  3. Ferry, J. D. (1980) Viscoelastic Properties of Polymers, 3rd Ed., Wiley, New York.

    Google Scholar 

  4. Mano, J. F., Viana, J. C. (2001) Effects of the strain rate and temperature in stressstrain tests: study of the glass transition of a polyamide-6. Polym. Testing 20, 937–943

    Article  CAS  Google Scholar 

  5. Strobl, G. (1996) The Physics of Polymers, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  6. Richert R., Blumen A., Eds. (1994) Disordered Effects on Relaxational Processes, Springer-Verlag, Berlin.

    Google Scholar 

  7. Menard, K. P. (1999) Dynamic Mechanical Analysis, A Practical Introduction, CRC Press, Boca Raton.

    Book  Google Scholar 

  8. Gibson, L. J., Ashby, M. F. (1997) Cellular Solids. Structure and Properties Cambridge University Press, 2nd Ed., Cambridge

    Google Scholar 

  9. Wetton, R. E. (1986) Dynamic mechanical thermal analysis of polymers and related systems, in Dawkins, J. V. (ed.), Developments in Polymer Characterization—5, Applied Science Publishers, London, pp. 179–221.

    Google Scholar 

  10. Harris, B., Braddell, O. G., Almond. D. P, Lefebvre, C, Verbist, J. (1993) Study if carbon-fibre surface treatments by dynamic-mechanical analysis, J. Mat. Sci. 28, 3353–3366

    Article  CAS  Google Scholar 

  11. Kim, S. C, Sperling, L. H., eds (1997) IPNs around the world, Science and Engineering, John Wiley&Sons, Chichester

    Google Scholar 

  12. Yamashita, J., Furman, B. R., Rawls, H. R., Wang, X., Agrawal, C. M., (2001) The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone, J. Biomed. Mater. Res. (Appl. Biomater.) 58, 47–53

    Article  CAS  Google Scholar 

  13. Yamashita, Li, X., J., Furman, B. R., Rawls, H. R., Wang, X., Agrawal, C. M. (2002) Collagen and bone viscoelasticity: a dynamic mechanical analysis, J. Biomed. Mater. Res. (Appi. Biomater.) 63, 31–36.

    Article  CAS  Google Scholar 

  14. Mano, J. F. (2002) The viscoelastic properties of cork, J. Mat. Sci., 37(2), 257–263.

    Article  CAS  Google Scholar 

  15. Vaz, C. M., Mano, J. F., Fossen, M. van Tuil, R. F., de Graaf, L. A., Reis, R. L., Cunha, A. M. (2002) Mechanical, Dynamic-Mechanical and thermal Properties of Soy Protein-Based Thermoplastics with potential Biomedicai Applications, J. Macrom. Sci.-Phys., B41(l), 33–46.

    Article  CAS  Google Scholar 

  16. Yildiz, M. E., Kokini, J. L. (2001) Determination of William-Landel-Ferry constants for a food polymer system: Effect of water activity and moisture content J. Rheol. 45, 903–912.

    Article  CAS  Google Scholar 

  17. Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., Fredberg, J. J. (2001) Scalling the microrheology of living cells, Phys Rev Lett 87(14) art. no. 148102.

    Google Scholar 

  18. Gomes, M. E., Ribeiro, A. S., Malafaya, P. B., Reis, R. L., Cunha, A. M. (2001) A New Approach Based on Injection Moulding to Produce Biodegradable Starch Based Polymeric Scaffolds, Biomaterials 22, 883–889

    Article  CAS  Google Scholar 

  19. Vaz, C. M., Fossen, M., Cunha, A. M., Reis, R. L. (2000) Casein and Soybean Thermoplastic Proteins as Alternative Biodegradable Polymers for Biomedicai Apllications, 6th World Biomaterials Congress, Hawai, USA, Apr., p. 429.

    Google Scholar 

  20. Silva, R. M., Mano, J. F., Reis, R. L. (2002) Development of chitosan membranes with controlled swelling properties for biomedicai applications, ESB2002, European Society for Biomaterials, Barcelona, Spain, Sept.

    Google Scholar 

  21. Reis, R. L., Cunha, A. M. (2000) New Degradable Load-Bearing Biomaterials Composed of Reinforced Starch Based Blends, J. of Appl. Med. Polym. 4, 1–5

    CAS  Google Scholar 

  22. Sousa, R. A., Mano, J. F., Reis, R. L., Cunha, A. M., Bevis, M. J. (2002) Mechanical performance of starch based bioactive composites molded with preferred orientation for potential medical applications. Polym. Eng. Sci., in press

    Google Scholar 

  23. Malafaya, P. B., Elvira, C, Gallardo, A., San Román, J., Reis, R. L. (2001) Porous Starch-Based Drug Delivery Systems Processed By A Microwave Treatment, J. of Biomat. Sci.—Polym. Ed. 12, 1227–124

    Article  CAS  Google Scholar 

  24. Vaz, C. M., De Graff, L. A., Reis, R. L., Cunha, A. M (2002) pH-Sensitive Soy Protein Hydrogels for the Controlled Release of an Anti-Inflamattory Drug, J. of Biomat. Sci.-Polym. Ed., submitted

    Google Scholar 

  25. Elvira, C, Mano, J. F., San Román, J., Reis, R. L. (2002) Starch Based Biodegradable Hydrogels With Potencial Biomedicai Applications As Drug Delivery Systems, Biomaterials 23, 1955–1966

    Article  CAS  Google Scholar 

  26. Espigares, I., Elvira, C, Mano, J. F., Vasquez, B., San Roman, J., Reis, R. L. (2002) New Biodegradable And Bioactive Acrylic Bone Cements Based On Starch Blends And Ceramic Fillers, Biomaterials 23(8), 1883–1895

    Article  CAS  Google Scholar 

  27. Demirgöz, D., Elvira, G, Mano, J. F., Cunha, A. M., Piskin, E., Reis, R. L. (2000) Chemical modification of starch based biodegradable polymeric blends: effects on water up-take, degradation behaviour and mechanical properties, Polym. Degrad. Stability 70, 161–170

    Article  Google Scholar 

  28. Vaz, C. M., Cunha, A. M., Reis, R. L. (2001) Degradation Model of Starch-EVOH/HA Composites, Mat. Res. Innovat, 4, 375–380

    Article  CAS  Google Scholar 

  29. Mendes, S. C, Bovell, Y. P., Reis, R. L., Cunha, A. M., de Bruijn, J. D., van Blitterswijk, C. A. (2001) Biocompatibility Testing of Novel of Starch-Based Materials with Potential Application in Orthopaedic Surgery, Biomaterials 22, 2057–2064.

    Article  CAS  Google Scholar 

  30. Gomes, M. E., Reis, R. L., Cunha, A. M., Blitterswijk, C. A., de Bruijn, J. D. (2001) Cytocompatibility and response of osteoblastic-like cells to starch based polymers: effects of several additives and processing conditions, Biomaterials 22, 1911–1917

    Article  CAS  Google Scholar 

  31. Marques, A. P., Reis, R. L., Hunt, J. A. (2002) In Vitro Evaluation Of The Biocompatibility Of Novel Starch Based Polymeric And Composite Material, Biomaterials 6, 1471–1478.

    Article  Google Scholar 

  32. Leonor, I. B., Ito, A., Onuma, K., Kanzaki, N., Reis, R. L. (2002) In-Vitro Bioactivity of Starch Thermoplastic/Hydroxylapatite Composite Biomaterials: An In Situ Study Using Atomic Force Microscopy, Biomaterials, in press

    Google Scholar 

  33. Leonor, I. B., Sousa, R. A., Cunha, A. M., Zhong, Z., Greenspan, D., Reis, R. L. (2002) Novel Starch Thermoplastic/ Bioglass® Composites: Mechanical Properties, Degradation Behaviour And In-Vitro Bioactivity, J. Mat. Sci.: Mat. in Med., in press

    Google Scholar 

  34. Murata, H., Taguchi, N., Hamada, T., McCabe, J.F. (2000) Dynamic viscoelastic properties and the age changes of long-term soft denture lines, Biomaterials 21, 1421–1427.

    Article  CAS  Google Scholar 

  35. Rodríguez-Pérez, M.A., Almanza, O., del Valle, J.L., González, A., de Saja, J. A. (2001) Improvement of the measurements process used for the dynamic mechanical characterisation of polyolefin foams in compression, Polym. Test. 20, 253–267.

    Article  Google Scholar 

  36. Reis, R. L., Cunha, A. M. (2001) Starch Polymers in Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd, p. 8810.

    Google Scholar 

  37. Butler, M. F., Cameron, R. E. (2000) A study of the molecular relaxations in solid starch using dielectric spectroscopy, Polymer 41, 2249–2263

    Article  CAS  Google Scholar 

  38. Mano, J. F., Koniarova, D., Reis, L. R., (2002), Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedicai applicability, J. Mater. Sci. Mater in Med, in press

    Google Scholar 

  39. Tian, D., Blacher, S., Dubois, Ph., Jérôme, R. (1998) Biodegradable and biocompatible inorganic-organic hybrid materials. 2. Dynamic mechanical properties, structure and morphology, Polymer 39, 855–864.

    Article  CAS  Google Scholar 

  40. Mano, J. F., Reis, R. L., Cunha, A. M. (2000) Effects of moisture and degradation time over the mechanical dynamic performance of starch based biomaterials. J. Appl. Polym. Sci.78, 2345–23

    Article  CAS  Google Scholar 

  41. Cerrada, M. L., Pereña, J. M., Benavente, R., Pérez, E. (2000) Viscoelastic processes in vinyl alcohol-ethylene copolymers. Influence of composition and thermal treatment. Polymer 41, 6655–6661.

    Article  CAS  Google Scholar 

  42. Saber-Sheikh, K., Clarke, R. L., Braden, M. (1999) Viscoelastic properties of some soft lining materials. I-effect of temperature. Biomaterials 20, 817–822.

    Article  CAS  Google Scholar 

  43. Kalachandra, S., Minton, R. J., Takamata, T., Taylor, D. F. (1995) Characterization of commercial soft liners by dynamic mechanical analysis. J. Mater. Sci. Mat. Med. 6, 218–222.

    Article  CAS  Google Scholar 

  44. Saber-Sheikh, K., Clarke, R. L., Braden, M. (2000) Viscoelastic properties of some soft lining materials. II-ageing characteristics. Biomaterials 20, 2055–2062.

    Article  Google Scholar 

  45. Waters, M., Jagger, R., Willianms, K., Jerolimov, V. (1996) Dynamic mechanical thermal analysis of denture sift lining materials. Biomaterials 17, 1627–1630.

    Article  CAS  Google Scholar 

  46. Brown, A. F., Jones, D. S., Woolfson, A. D. (1997) Investigation of the thermorheology of poloxamers using oscillatory rheometry. J. Pharm. Pharmacol. 49, 26.

    Article  Google Scholar 

  47. Watase, M., Nishinari, K. (1989) Effects of the degree of saponification and concentration on the thermal and rheological properties of poly(vinyl alcohol-dimethyl sulfoxide-water gels. Polym. J. 21, 567–575.

    Article  CAS  Google Scholar 

  48. Jauregui, B., Munoz, M. E., Santamaría, A. (1995) Rheology of hydroxyethylated starch aqueous systems. Analysis of gel formation. Int. J. Biol. Macromol. 17, 49–54.

    Article  CAS  Google Scholar 

  49. Frey, M. W., Cuculo, J. A., Khan, S. A. (1996) Rheology and gelation of cellulose/ammonia/ammonium thiocyanate solutions. J. Polym. Sci. B: Polym. Phys 34, 2375–2381.

    Article  CAS  Google Scholar 

  50. Sheu, M-T, Huang, J-C, Yeh, G-C, Ho, H-O (2001) Characterization of collagen gel solutions and collagen matrices for cell cultures. Biomaterials 22, 1713–1719.

    Article  CAS  Google Scholar 

  51. Elvira, C, I. Espigares, I., Mano, J. F., Vazquez, B., San Roman, J., Reis, R. L. (2001) New Starch Based Partially Biodegradable In-situ Polymerazible Bioactive Bone Cements, 27th Annual Meeting of The Society For Biomaterials, St. Paul, Minnesota, USA, Apr., p. 271

    Google Scholar 

  52. Cauich-Rodriguez, J. V., Deb, S., Smith, R. (1996) Dynamic mechanical characterization of hydrogel blends of poly(vinyl-alcohol-vinyl acetate) with poly(acrylic acid) or poly(vinyl pyrrolidone). J. Mat. Sci. Mat. Med. 7, 349–353.

    Article  CAS  Google Scholar 

  53. Skrovanek, D. J. (1990) The assessment of the cure by dynamic mechanical thermal analysis. Prog. Org. Coatings 18, 89–101.

    Article  CAS  Google Scholar 

  54. Vaidyanathan, J., Vaidyanathan, T. K. (1995) Dynamic mechanical analysis of heat, microwave and visible ligh cure denture base resins. J. Mater. Sci. Mat. Med. 6, 670–674.

    Article  CAS  Google Scholar 

  55. Papadogiannis, Y., Lakes, R. S., Petrou-Americanos, A., Theothoridou-Pahini, S. (1993) Temperature dependence of the dynamic viscoelastic behavior of chemical-and light-cured composites. Dent. Mater. 9, 118–122.

    Article  CAS  Google Scholar 

  56. Pascual, B., Gurruchaga, M., Ginebra, M. P., Gil, F. J., Planell, J. A., Vázquez, B., San Románm J., Goñi, I (1999) Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate, Biomaterials 20, 453–463

    Article  CAS  Google Scholar 

  57. Yang, J-M, Li, H-M, Yang, M-C, Shih, C-H (1999) Characterization of acrylic bone cements using dynamic mechanical analysis, J. Biomed. Mater. Res. (Appl. Biomater.) 48, 52–60

    Article  CAS  Google Scholar 

  58. Yang, J-M, Huang, P-Y, Yang, M-C, Lo, S.K. (1997) Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cements, J. Biomed. Mater. Res. (Appl. Biomater.) 38, 361–369

    Article  CAS  Google Scholar 

  59. Tsuji, H., Ikada, Y. (1996) Blends of aliphatic polyesthers. I. Physical properties and morphologies of solution-cast blends of poly(DL-lactide) and poly(e-caprolactone). J. Appi. Polym. Sci. 60, 2367–2375.

    Article  CAS  Google Scholar 

  60. Vasquez-Torres, H., Cruz-Ramos, C.A. (1994) Blends of cellulosic esters with poly(E-caprolactone): characterisation by DSC, DMA and WAXS. J. Appl. Polym. Sci. 54, 1141–1159.

    Article  Google Scholar 

  61. Penco, M., Sartore, L., Bignotti, F., D’Antone, S., Di Landra, L. (2000) Thermal properties of a new class of block copolymers based on segments of poly(D,L-lactic-glycolic acid) and poly(e-caprolactone). Eur. Polym. J. 36, 901–908.

    Article  CAS  Google Scholar 

  62. Martin, O., Avérous, L. (2001) Poly(lectic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42, 6209–6219.

    Article  CAS  Google Scholar 

  63. Celli, A., Scandola, M. (1992) Thermal properties and physical ageing of poly(L-lactic acid). Polymer 33, 2699–2703.

    Article  CAS  Google Scholar 

  64. Starkweather, H. W., Avakian P., Fontanella, J. J., Wintersgill, M. C. (1993) Internal motions in polylactide and related polymers. Macromolecules 26, 5084–5087.

    Article  CAS  Google Scholar 

  65. Maquet, V., Blacher, S., Pirard, R., Pirard, J. P., Jerome, R. (2000) Characterization of porous polylactide foams by image analysis and impedance spectroscopy. Langmuir 16, 10463–10470.

    Article  CAS  Google Scholar 

  66. Nazhat, S. N., Kellomäki, M., Törmälä, P., Tanner, K. E., Bonfield, W. (2001) Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J. Biomed. Mater. Res. (Appi. Biomater.) 58, 335–343.

    Article  CAS  Google Scholar 

  67. Cascone, M. G. (1997) Dynamic-mechanical properties of bioartificial polymeric materials. Polym. Int. 43, 55–69.

    Article  CAS  Google Scholar 

  68. Oliveira, A. L, Mano, J. F., San Román, J., Reis, R. L. (2001) Study of the effect of β-radiation sterilisation on the properties of different starch based polymers. European Society for Biomaterials—2001 Conference. London (U.K.), 12-14 September.

    Google Scholar 

  69. Mano, J. F., Vaz, C. M., Mendes, S.C., Reis, R.L., Cunha, A. M.—Dynamic Mechanical Properties of Hydroxylapatite Reinforced and Porous Starch-Based Degradable Biomaterials. J. Mater. Sci.: Mater, in Medicine 10, 857–862 (1999).

    Google Scholar 

  70. Sousa, R. A., Kalay, G., Reis, R. L., Cunha, A. M., Bevis, M. J. (2000) Injection Molding of a Starch/EVOH Blend Aimed as an Alternative Biomaterial for Temporary Applications, J. of Appl. Polym. Sci. 77, 1303–1315

    Article  CAS  Google Scholar 

  71. Sousa, R. A., Mano, J. F., Reis, R. L., Cunha, A. M., Bevis, M. J. (2002) Mechanical performance of starch based bioactive composites molded with preferred orientation for potential medical applications. Polym. Eng. Sci., 42, 1032–1045.

    Article  CAS  Google Scholar 

  72. Kalay, G., Sousa, R. A., Reis, R. L., Cunha, A. M., Bevis, M. J. (1999) The Enhacement of the Mechanical Properties of a High Density Polyethylene, J. of Appl. Polym. Sci. 73, 2473–2483.

    Article  CAS  Google Scholar 

  73. Mano, J. F., Sousa, R.A., Reis, R. L., Cunha, A. M., Bevis, M. J. (2001) Viscoelastic behaviour and time-temperature correspondence of HDPE varying the degree of orientation induced by processing. Polymer 42, 6187–6198.

    Article  CAS  Google Scholar 

  74. Mano, J. F. (2001) Cooperativity in the crystalline ϑ-relaxation in polyethylene. Macromolecules 34, 8825–8828.

    Article  CAS  Google Scholar 

  75. Bonfield, W., Wang, M., Tanner, K. E. (1998) Interfaces in analogue biomaterials, Acta. Mater. 46, 2509–2518.

    Article  CAS  Google Scholar 

  76. Nazhat, S. N., Joseph, R., Wang, M., Smith, R., Tanner, K. E., Bonfield, W. (2000) Dynamic mechanical characterization of hydroxyapatite reinforced polyethylene: effect of particle size. J. Mat. Sci. Mat. Med. 11, 621–628.

    Article  CAS  Google Scholar 

  77. Sousa, R. A, Mano, J. F., Reis, R. L., Cunha, A. M., Bevis, M. J. (2002) Mechanical behaviour of polyethylene/hydroxyapatite bone-analogue composites moulded with an induced anisotropy, in Bioceramicsl 4, Ed S. Brown, I. Clarke, P. Williams, Trans Tech Publications, Zurich, Switzerland, p. 469–472.

    Google Scholar 

  78. Alves, N. M., Mano, J. F., Gómez-Ribelles, J. L. (2002) Molecular mobility in polymers studied with Thermally Stimulated Recovery. II-study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 43, 3627–3633.

    Article  CAS  Google Scholar 

  79. Alves, N. M., Mano, J. F., Gómez-Ribelles, J. L. (2001) Molecular Mobility in a Thermoset as seen by TSR and DMA near T g. Mat. Res. Innovat, 4, 170–1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mano, J.F., Reis, R.L., Cunha, A.M. (2002). Dynamic Mechanical Analysis in Polymers for Medical Applications. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics