Skip to main content

Adsorption of Heavy Metals to Microbial Biomass

Use of Biosorption for Removal of Metals from Solutions

  • Chapter
The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions

Part of the book series: NATO Science Series ((NAIV,volume 19))

Abstract

The finding that several microorganisms are able to bind and accumulate heavy metals suggested the possibility to use them for removal of metals from solutions by the process called biosorption. Although biosorption of heavy metals was studied also with plants (mosses, leaves of trees) and marine macroalgae, microorganisms seem to be the most promising for practical use. The use of different microorganisms for biosorption was reviewed several times [17]. Here we want to concentrate on the mode of metal binding, the possibilities to increase the binding capacity of microbial biomass, and the usefulness of microbes for biosorption in large-scale industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volesky, B. (1990) Biosorption of heavy metals, CRC Press, Boca Raton.

    Google Scholar 

  2. Volesky, B. (1994) Advances in biosorption of metals — selection of biomass types, FEMS Microbiol. Rev. 14, 291–302.

    Article  CAS  Google Scholar 

  3. Volesky, B. and Holan, Z.R. (1995) Biosorption of heavy metals, Bioteclmol. Prog. 11, 235–250.

    Article  CAS  Google Scholar 

  4. Kratochvil, D. and Volesky, B. (1998) Advances in the biosorption of heavy metals. Trends Bioteclmol. 16, 291–300.

    Article  CAS  Google Scholar 

  5. White, C., Wilkinson, S.C., and Gadd, G.M. (1995) The role of microorganisms in biosorption of toxic metals and radionuclides, Internat. Biodeterior. Biodegrad. 35, 17–40.

    Article  CAS  Google Scholar 

  6. Kapoor, A. and Viraraghavan, T. (1995) Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review, Biores. Technol. 53, 195–206.

    CAS  Google Scholar 

  7. Siegel, S.M., Galun, M., and Siegel, B.Z. (1990) Filamentous fungi as metal biosorbents: a review, Water Air Soil Pollut. 53, 335–343.

    Article  CAS  Google Scholar 

  8. Falla, J. and Block, J.C. (1993) Binding of Cd2 +, Ni2 +, Cu2 +, Zn2+ by isolated envelopes of Pseudomonas fluorescens, FEMS Lett. 1993, 347–352.

    Article  Google Scholar 

  9. Akthar, M.N., Sastry, K.S., and Mohan, P.M. (1996) Mechanism of metal-ion biosorption by fungal biomass, Biometals 9, 21–28.

    Article  CAS  Google Scholar 

  10. Cho, D.Y., Lee, S.T., Park, S.W., and Chung, A.S. (1994) Studies on the biosorption of heavy metals onto Chlorella vulgaris, J. Environ. Sci. Health A 29, 389–409.

    Google Scholar 

  11. Janssoncharrier, M., Saucedo, I., Guibal, E., and Lecloirec, P. (1995) Approach of uranium sorption mechanisms on chitosan and glutamate glucan by Ir and C-13-NMR analysis, React. Funct. Polymers 27, 209–221.

    Article  CAS  Google Scholar 

  12. Kapoor, A. and Viraraghavan, T. (1997) Heavy metal biosorption sites inAspergillus niger, Biores. Technol. 61 221–227.

    Article  CAS  Google Scholar 

  13. Sarret, G., Manceau, A., Spadini, L., Roux, J.C, Hazemann, J.L., Soldo, Y., Eybertberard, L., and Menthonncx, J.J. (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy, Environ. Sci. Technol. 32, 1648–1655.

    Article  CAS  Google Scholar 

  14. Brady, D., Stoll, A.D., Starke, L., and Duncan,.T.R. (1994) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyccs cerevisiae, Bioteclmol. Bioeng. 44, 297–302.

    Article  CAS  Google Scholar 

  15. Gadd, M.H. and deRome, L. (1988) Biosorption of copper by fungal melanin. Appl. Microbiol. Bioteclmol. 29, 610–617.

    CAS  Google Scholar 

  16. Fogarty, R.V. and Tobin, J.M. Fungal melanins and their interactions with metals. Enzyme Microb. Technol. 19, 311–317.

    Google Scholar 

  17. Pradhan, A.A. and Levine, A.D. (1992b) Role of extracellular components in microbial biosorption of copper and lead, Water Sci. Technol. 26, 2153–2156.

    CAS  Google Scholar 

  18. Butler, M.J. and Day, A.W. (1998) Fungal melanins: a review, Can. J. Microbiol. 44, 1115–1136.

    Article  CAS  Google Scholar 

  19. Baldrian, P. and Gabriel, J. (1997) Effect of heavy metals on the growth of selected wood-rotting basidiomycetcs, Folia Microbiol. 42, 521–523.

    Article  CAS  Google Scholar 

  20. Muralecdharan, T.R. and Venkobachar, L.I. (1994) Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum, Environ. Technol. 15, 1015–1027.

    Article  Google Scholar 

  21. Haas, J.R., Bailey, E.H., and Purvis, O.W. (1997) Bioaccumulation of metals by lichens — uptake of aqueous uranium by Peltigera mcmbranacea as a function of time and pH , Amcr. Mineral. 83, 1494–1502.

    Google Scholar 

  22. Pradhan, A.A. and Levine, A.D. (1992a) Experimental evaluation of microbial metal uptake by individual components of a microbial biosorption system, Water Sci. Technol. 262145–2148.

    CAS  Google Scholar 

  23. Xie, J.Z., Chang, H.L., and Kilbane, J.J. (1996) Removal and recovery of metal ions from waste water using biosorbents and chemically modified biosorbents, Biores. Technol. 57, 127–136.

    Article  CAS  Google Scholar 

  24. Kama, R.R., Sajani, L.S., and Mohan, P.M. (1996) Bioaccumulation and biosorption of Co2+ by Neurospora crassa, Biotechnol. Lett. 18, 1205–1208.

    Article  Google Scholar 

  25. Wang, C.L., Michels, P.C., Dawson, S.C., Kitisakkul, S., Baross, J.A., Keasling, J.D., and Clark, D.S. (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture, Appl. Environ. Microbiol. 63, 4075–4078.

    CAS  Google Scholar 

  26. Vepachedu, S.K.V.R.R., Akthar, N., and Mohan, P.M. (1997) Isolation of a cadmium tolerant Curvularia sp. from polluted effluents, Cuir. Sci. 73, 453–455.

    Google Scholar 

  27. Engl, A. and Kunz, B. (1995) Biosorption of heavy metals by Saccharomyces cercvisiae — effects of nutrient conditions, J. Chem. Techno!. Biotechnoi. 63, 257–261.

    Article  CAS  Google Scholar 

  28. Simmons, P. and Singleton, I. (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces ccrevisiae, Appl. Microbio!. Biotechnol. 45, 278–285.

    Article  CAS  Google Scholar 

  29. Stoll, A. and Duncan, J.R. Enhanced heavy metal removal from waste water by viable, glucose pretreated Saccharomyces cercvisiae cells, Biotechnoi. Lett. 18, 1209–1212.

    Google Scholar 

  30. Hefnawy, M.A. and Razak, A.A. (1998) Alteration of cell wall composition of Fusarium oxysporum by copper stress, Folia Microbiol. 43, 453–458.

    Article  CAS  Google Scholar 

  31. Baillet, F., Magnin, J.P., Cheruy, A., and Ozil, P. (1997) Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass, Environ. Technol. 18, 631–637.

    Article  CAS  Google Scholar 

  32. Delgado, A., Anselmo, A.M., and Novais, J.M. (1998) Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum, Water Environ. Res. 70, 370–375.

    Article  CAS  Google Scholar 

  33. Chang, J.S., Law, R., and Chang, C.C. (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa Pu21, Water Res. 31, 1651–1658.

    Article  CAS  Google Scholar 

  34. Puranik, P.R. and Paknikar, K.M. (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain Mem B-181 — characterization studies, Biotechnoi. Prog. 15, 228–237.

    Article  CAS  Google Scholar 

  35. Huang, C.P. and Chiu, H.H. (1994) Removal of trace Cd(II) from aqueous solutions by fungal adsorbents — an evaluation of self-immobilization of Rhizopus otyzae, Water Sci. Technol. 30, 245–253.

    CAS  Google Scholar 

  36. Singleton, I. and Simmons, P. (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae, J. Chem. Technol. Biotechnoi. 65, 21–28.

    Article  CAS  Google Scholar 

  37. Ting, Y.P. and Teo, W.K. (1994) Uptake of cadmium and zinc by yeast — effects of Co-metal ion and physical-chemical treatments, Biores. Technol. 50, 113–117.

    Article  CAS  Google Scholar 

  38. Akthar, M.N., Sastry, K.S., and Mohan, P.M. (1995) Biosorption of silver ions by processed Aspergillus niger biomass, Biotechnoi. Lett. 17, 551–556.

    Article  CAS  Google Scholar 

  39. Kapoor, A. and Viraraghavan, T. (1998) Biosorption of heavy metals on Aspergillus niger — effect of pretreatment, Biores. Technol. 63, 109–113.

    Article  CAS  Google Scholar 

  40. Gabriel, J. and Baldrian, P. (1996) Applicability of cultures of higher fungi to biosorption of cadmium, Mineralin Slovaca 28, 343–344.

    CAS  Google Scholar 

  41. Huang, C.P. and Huang, C.P. (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal, Water Res. 30, 1985–1990.

    Article  CAS  Google Scholar 

  42. Riordan, C., Bustard, M., Putt, R., and McHale, A.P. (1997) Removal of uranium from solution using residual brewery yeast — combined biosorption and precipitation, Biotechnoi. Lett. 19, 385–387.

    Article  CAS  Google Scholar 

  43. Fourest, E., Canal, C., and Roux, J.C. (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rliizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation, FEMS Microbiol. Reu. 14, 325–332.

    Article  CAS  Google Scholar 

  44. Lee, J.Y. and Lee, E.K. (1998) Drying temperature can change the specific surface area of Phanerochaete chrysosporium pellets for copper adsorption, Biotechnoi. Lett. 20, 531–533.

    Article  CAS  Google Scholar 

  45. Puranik, P.R. and Paknikar, K.M. (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass , J. Bioteclmol. 55, 113–124.

    Article  CAS  Google Scholar 

  46. Bustard, M., Rollan, A., and McHale, A.P. (1998) The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash, Bioprocess Eng. 18, 59–62.

    Article  CAS  Google Scholar 

  47. Churchill, S.A., Walters, J.V., and Churchill, P.F. (1995) Sorption of heavy metals by prepared bacterial cell surfaces, J. Environ. Eng. ASCE 121, 706–711.

    Article  CAS  Google Scholar 

  48. Loaec, M., Olier, R., and Guezennec J. (1997) Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide, Water Res. 31, 1171–1179.

    Article  CAS  Google Scholar 

  49. Wehrheim, B. and Wettern, M. (1994) Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca, Appl. Microbiol. Bioteclmol. 41, 725–728.

    Article  CAS  Google Scholar 

  50. Chen, S.L., Kim, E.K., Shuler, M.L., and Wilson, D.B. (1998) Hg2+ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor, Bioteclmol. Prog. 14, 667–671.

    Article  CAS  Google Scholar 

  51. Brower, J.B., Ryan, R.L., Pazirandeh, M. (1997) Comparison of ion exchange resins and biosorbents for the removal of heavy metals from plating factory waste-water, Environ. Sci. Technol. 31, 2910–2914.

    Article  CAS  Google Scholar 

  52. DaCosta, A.C.A. and Leite, S.G.F. (1991) Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells, Bioteclmol. Lett. 13, 559–562.

    Article  CAS  Google Scholar 

  53. Wilkins, E. and Yang, Q.L. (1996) Comparison of the heavy metal removal efficiency of biosorbents and granular activated carbons, J. Environ. Sci. Health A 31, 112–118.

    Google Scholar 

  54. Zhou, J.L. and Kiff, R.J. (1991) The uptake of copper from aqueous solution by immobilized fungal biomass, J. Chcm. Technol. Bioteclmol. 52, 317–330.

    Article  CAS  Google Scholar 

  55. Scott, J.A. and Karanjkar, A.M. (1992) Repeated cadmium biosorption by regenerated Enterobacter aerogenes biofilm attached to activated carbon, Bioteclmol. Lett. 14, 737–740.

    Article  CAS  Google Scholar 

  56. Hu, M.Z.C. and Reeves, M. (1997) Biosorption of uranium by Pseudomonas aeruginosa strain Csu immobilized in a novel matrix, Bioteclmol. Prog. 13, 60–70.

    Article  CAS  Google Scholar 

  57. Veglio, F., Beolchini, F., Gasbarro, A., Lora, S., Corain, B., and Toro, L. (1997) Polyhydroxyethylmethacrylate (Polyhema)-Trimethylolpropanetrimethacrylate (Tmptm) as a support for metal biosorption with Arthrobacter sp., Hydrometallurgy 44, 317–320.

    Article  CAS  Google Scholar 

  58. Chua, H., Wong, P.K., Yu, P.H.F., and Li, X.Z. (1998) The removal and recovery of copper(II) ions from waste water by magnetite immobilized cells of Pseudomonas putida 5-X, Water Sci. Technol. 38, 315–322.

    CAS  Google Scholar 

  59. Mamaril, J.C., Paner, E.T., and Alpante, B.M. (1997) Biosorption and desorption studies of chromium(III) by free and immobilized Rhizobium (Bjv-R-12) cell biomass, Biodegradation 8, 275–285.

    Article  CAS  Google Scholar 

  60. Yong, P. and Macaskie, L.E. (1998) Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to develop a method for the biologically-mediated removal of plutonium from solution, J. Chcm. Techno!. Bioteclmol. 71, 15–26.

    Article  CAS  Google Scholar 

  61. Ashkenazy, R., Yannai, S., Rahman, R., Rabinovitz, E., and Gottlieb, L. (1999) Fixation of spent Saccharomyces ccrevisiac biomass for lead sorption, Appl. Microbiol. Bioteclmol. 52, 608–611.

    Article  CAS  Google Scholar 

  62. Sag, Y., Nourbakhsh, M., Aksu, Z., and Kutsal, T. (1995) Comparison of Ca-alginate and immobilized Z. ramigcra as sorbents for copper (II) removal, Process Biochem. 30, 175–181.

    CAS  Google Scholar 

  63. Prakasham, R.S., Merrie, J.S., Sheela, R., Saswathi, N., and Ramakrishna, S.V. (1999) Biosorption of chromium-VI by free and immobilized Rhizopus anhizus, Environ. Pollut. 104, 421–427.

    Article  CAS  Google Scholar 

  64. Gourdon, R., Rus, E., Bhende, S., and Sofer, S.S. (1990) A comparative study of cadmium uptake by free and immobilized cells from activated sludge, J. Environ. Sci. Health A 25, 1019–1036.

    Google Scholar 

  65. McKay, G., Ho, Y.S., and Ng J.C.Y. (1999) Biosorption of copper from waste waters — a review, Separ. Purif. Meth. 28, 87–125.

    Article  CAS  Google Scholar 

  66. McEldowney, S. (1990) Microbial biosorption of radionuclides in liquid effluent treatment, Appl. Biochem. Bioteclmol. 26, 159–179.

    Article  CAS  Google Scholar 

  67. Ashley, N.V. and Roach, D.J.W. (1990) Review of biotechnology application to nuclear waste treatment, J. Chem. Technol. Bioteclmol. 49, 381–394.

    Article  CAS  Google Scholar 

  68. Torma, A.E. (1988) Use of biotechnology in minig and metalurgy, Bioteclmol. Adv. 6, 1–8.

    Article  CAS  Google Scholar 

  69. Corder, S.L. and Reeves, M. (1994) Biosorption of nickel in complex aqueous waste streams by cyanobacteria, Appl. Biochem. Bioteclmol. 45-46, 847–859.

    Article  CAS  Google Scholar 

  70. Zhao, M., Duncan, J.R., and Vanhille, R.P. (1999) Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides, Water Res. 33, 1516–1522.

    Article  CAS  Google Scholar 

  71. Tobin, J.M. and Roux, J.C. (1998) Mucor biosorbent for chromium removal from tanning effluent, Water Res. 32, 1407–1416.

    Article  CAS  Google Scholar 

  72. Tsezos, M., Baird, M.H.I., and Shemilt, L.W. (1986) Adsorptive treatment with microbial biomass of 226Ra-containing waste-waters, Chem. Eng. J. 32, B29-B38.

    Google Scholar 

  73. Muraleedharan, T.R., Philip, L., Iyengar, L., and Venkobachar, C. (1994) Application studies of biosorption for monazite processing industry effluents, Biorcs. Technol. 49, 179–186.

    Article  CAS  Google Scholar 

  74. Tsezos, M., McCready, R.G.L., and Bell, J.P. (1989) The continuous recovery of uranium from biologically leached solutions using immobilized biomass, Bioteclmol. Bioeng. 34, 10–17.

    Article  CAS  Google Scholar 

  75. Atkinson, B.W., Bux, F., and Kasan, H.C. (1998) Waste activated-sludge remediation of metalplating effluents, Water SA 24, 355–359.

    CAS  Google Scholar 

  76. Morper, M. (1985) Anaerobic biosorption: removal of heavy metals from waste-water, Chem. Anlagen-Verfahren 18, 103–106.

    CAS  Google Scholar 

  77. Huang, C.P. and Morehart, A.L. (1991) Proton competition in Cu(II) adsorption by fungal mycelia, Water Res. 25, 1365–1375.

    Article  CAS  Google Scholar 

  78. Garnham, G.W., Codd, G.A., and Gadd, G.M. (1991) Effect of salinity and pH on cobalt biosorption by the estuarine microalga Chlorella salina, Biol. Metals 4, 151–157.

    Article  CAS  Google Scholar 

  79. Yin, P.H., Yu, Q.M., Jin, B., and Ling, Z. (1999) Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater, Water Res. 33, 1960–1963.

    Article  CAS  Google Scholar 

  80. Gabriel, J., Mokrejš, M., Bílý, J., and Rychlovsky, P. (1994) Accumulation of heavy metals by some wood-rotting fungi, Folia Microbiol. 39, 115–118.

    Article  CAS  Google Scholar 

  81. Gabriel, J., Vosáhlo, J., and Baldrian, P. (1996) Biosorption of cadmium to mycclial pellets of wood-rotting fungi, Bioteclmol. Tech. 10, 345–348.

    CAS  Google Scholar 

  82. Andres, Y., MacCordick, H.J., and Hubert, J.C. (1995) Selective biosorption of thorium ions by an immobilized mycobacterial biomass, Appl. Microbiol Bioteclmol. 44, 271–276.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baldrian, P., Gabriel, J. (2003). Adsorption of Heavy Metals to Microbial Biomass. In: Šašek, V., Glaser, J.A., Baveye, P. (eds) The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Science Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0131-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0131-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1142-9

  • Online ISBN: 978-94-010-0131-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics