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ANNOTATION 

This monograph by N. I. Muskhelishvili systema­
tically acquaints the reader with the mathematical 
apparatus of Cauchy type integrals and singular 
integral equations, in the study of which the author 
and his students took active interest. A considerable 
part of the book is devoted to applications to the 
solution of numerous problems of potential theory, 
the theory of elasticity and other sections of mathe­
matical physics. 

The book is intended for postgraduates and students 
of advanced courses of the physico-mathematical 
faculties, and likewise for research engineers. 



EDITOR'S PREFACE 

In preparing this translation for publication certain minor 
modifications and additions have been introduced into the original 
Russian text, in order to increase its readibility and usefulness. 
Thus, instead of the first person, the third person has been used 
throughout; wherever possible footnotes have been included with 
the main text. The chapters and their subsections of the Russian 
edition have been renamed parts and chapters respectively and the 
last have been numbered consecutively. 

An authors and subject index has been added. In particular, 
the former has been combined with the list of references of the 
original text, in order to enable the reader to find quickly all 
information on anyone reference in which he may be especially 
interested. This has been considered most important with a view 
to the difficulties experienced outside Russia in obtaining references, 
published in that country. 

Russian names have been printed in Russian letters in the 
authors index, in order to overcome any possible confusion arising 
from transliteration. 

Zurich. J. R. M. RAnoK 
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PREFACE 

This book is intended for an extensive field of readers, in particular 
for those interested in applications to the theory of elasticity, 
hvdromechanics and other branches of mathematical physics. The 
bOok is accessible to those acquainted with the basic theory of func­
tions of a complex variable and the theory of Fredholm integral 
equations. To facilitate the reading of the book, theorems, the 
method of proof of which is not of essential independent interest, 
have been printed in italics, so that the proofs may be omitted 
without affecting an understanding of the nature of the matter. 
In addition, wherever possible, the Parts and their chapters 
devoted to different applications have been made independent 
of one another. It is hoped that the methods studied in this book 
may be effectively employed in the solution of many problems of 
an applied character. Some simple applications to potential theory, 
the theory of elasticity and hydromechanics are given in this book. 

The idea of writing this book resulted from the Author's lectures 
in a seminar at the Mathematical Institute, Tiflis, in 1940-1942. 
Under the influence of a series of results obtained by members of 
the seminar (chiefly due to the excellent work of I. N. Vekua.) the 
range of problems which the Author proposed to examine was essen­
tiallyaltered; the Author may state with much satisfaction that a 
large proportion of the contents of this book must be considered 
as the result of the collective work of the young members of the 
Tiflis Mathematical Institute of the Academy of Sciences of the 
Georgian S.S.R. together with 1. N. Vekua and the Author himself. 
Tiflis, Autumn 1944 N. I. MUSKHELISHVILI 

In adding the last corrections to the book the Author desires to 
use this opportunity to express his deep gratitude to the publishing 
house which always willingly complied with the Author's suggestions. 
The difficult and responsible task of proof-reading was considerably 
eased for the Author by the extraordinary kindness ofL. I. Bokshitski 
on the staff of the press, to whom he extends his sincere gratitude 
just as to all the other members of the staff of the 16th Printing 
Establishment of the State publishers for their prompt and efficient 
work. 

Moscow, Autumn 1945 N. I. M. 



INTRODUCTION 

In recent years the theory of singular integral equations has 
assumed increasing importance in applied problems. 

In this book only one-dimensional (i.e., where tl.e range of inte­
gration is one-dimensional, i.e.. a line) singular equations invol­
ving Cauchy principal values will be examined, since the theory of 
multi-dimensional equations of corresponding form is still far from 
completion. (Some references to-the literature dealing with the latter 
are given in § 59). 

The fundamentals of the theory of one-dimensional singular in­
tegral equations of the type described were included in the work 
of Poincare and Hilbert, almost directly after the development of 
the classical theory of integral equations by Fredholm. However, 
the theory of singular integral equations did not receive the atten­
tion of mathematicians for some time. On the other hand many 
problems of an applied character naturally reduced to singular equa­
tions, e.g. problems of the theory of elasticity, etc.; thus often in 
practice these equations were arrived at by "ordinary methods" 
and this did not always lead to satisfactory results. 

However, during recent years, the theory of one-dimensional sin­
gular integral equations has advanced considerably and it can now 
be presented in a finished form. 

This theory appears to be particularly simple and effective, if the 
solution of a boundary problem of the theory of functions of a 
complex variable, to be called the Hilbert problem, is considered. 
Therefore the theory of singular equations is here closely linked with 
the above boundary problem. The solution of the latter will be used 
for the development of the theory of singular equations; afterwards 
this theory will be applied to the solution of other more complicated 
boundary problems, in particular, to problems encountered in 
potential theory, the theory of elasticity and in hydromechanics. 

Having in mind the implications for different problems of mathe­
matical physics, some restrictions will be imposed upon the unknown 
and the given functions appearing in the integral equations under 
consideration or in the boundary conditions of the problems con­
sidered, which will largely simplify the investigation, but not affect 
the final theory. 

The fundamental tools of the investigation are Cauchy integrals, 
the elementary theory of which is given in Part I together with a 
number of direct simpler applications. 

As regards the contents of the remaining Parts nothing will be 
:said here, since a preliminary idea can be gained by means of the 
sufficiently detailed list of contents at the beginning of the book. 




