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ANNOTATION

This monograph by N. I. Muskhelishvili systema-
tically acquaints the reader with the mathematical
apparatus of Cauchy type integrals and singular
integral equations, in the study of which the author
and his students took active interest. A considerable
part of the book is devoted to applications to the
solution of numerous problems of potential theory,
the theory of elasticity and other sections of mathe-
matical physics.

The book is intended for postgraduates and students
of advanced courses of the physico-mathematical
faculties, and likewise for research engineers.



EDITOR’S PREFACE .

In preparing this translation for publication certain minor
modifications and additions have been introduced into the original
Russian text, in order to increase its readibility and usefulness.
Thus, instead of the first person, the third person has been used
throughout; wherever possible footnotes have been included with
the main text. The chapters and their subsections of the Russian
edition have been renamed parts and chapters respectively and the
last have been numbered consecutively.

An authors and subject index has been added. In particular,
the former has been combined with the list of references of the
original text, in order to enable the reader to find quickly all
information on any one reference in which he may be especially
interested. This has been considered most important with a view
to the difficulties experienced outside Russia in obtaining references,
published in that country.

Russian names have been printed in Russian letters in the
authors index, in order to overcome any possible confusion arising
from transliteration.

Ziirich. J. R. M. Rabok
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PREFACE

This book is intended for an extensive field of readers, in particular
for those interested in applications to the theory of elasticity,
hydromecharics and other branches of mathematical physics. The
book is accessible to those acquainted with the basic theory of func-
tions of a complex variable and the theory of Fredholm integral
equations. To facilitate the reading of the book, theorems, the
method of proof of which is not of essential independent interest,
have been printed in italics, so that the proofs may be omitted
without affecting an understanding of the nature of the matter.
In addition, wherever possible, the Parts and their chapters
devoted to different applications have been made independent
of one another. It is hoped that the methods studied in this book
may be effectively employed in the solution of many problems of
an applied character. Some simple applications to potential theory,
the theory of elasticity and hydromechanics are given in this book.

The idea of writing this book resulted from the Author’s lectures
in a seminar at the Mathematical Institute, Tiflis, in 1940-—1942.
Under the influence of a series of results obtained by members of
the seminar (chiefly due to the excellent work of I. N. Vekua) the
range of problems which the Author proposed to examine was essen-
tially altered; the Author may state with much satisfaction that a
large proportion of the contents of this book must be considered
as the result of the collective work of the young members of the
Tiflis Mathematical Institute of the Academy of Sciences of the
Georgian S.S.R. together with 1. N. Vekua and the Author himself.

Tiflis, Autumn 1944 N. 1. MUSKHELISHVILI

In adding the last corrections to the book the Author desires to
use this opportunity to express his deep gratitude to the publishing
house which always willingly complied with the Author’s suggestions.
The difficult and responsible task of proof-reading was considerably
eased for the Author by the extraordinary kindness of L. I. Bokshitski
on the staff of the press, to whom he extends his sincere gratitude
just as to all the other members of the staff of the 16th Printing
Establishment of the State publishers for their prompt and efficient
work.

Moscow, Autumn 1945 N.I. M.



INTRODUCTION

In recent years the theory of singular integral equations has
assumed increasing importance in applied problems.

In this book only one-dimensional (i.e., where the range of inte-
gration is one-dimensional, i.e., a line) singular equations invol-
ving Cauchy principal values will be examined, since the theory of
multi-dimensional equations of corresponding form is still far from
completion. (Some references tothe literature dealing with the latter
are given in § 59).

The fundamentals of the theory of one-dimensional singular in-
tegral equations of the type described were included in the work
of Poincaré and Hilbert, almost directly after the development of
the classical theory of integral equations by Fredholm. However,
the theory of singular integral equations did not receive the atten-
tion of mathematicians for some time. On the other hand many
problems of an applied character naturally reduced to singular equa-
tions, e.g. problems of the theory of elasticity, ete.; thus often in
practice these equations were arrived at by ‘“ordinary methods”
and this did not always lead to satisfactory results.

However, during recent years, the theory of one-dimensional sin-
gular integral equations has advanced considerably and it can now
be presented in a finished form.

This theory appears to be particularly simple and effective, if the
solution of a boundary problem of the theory of functions of a
complex variable, to be called the Hilbert problem, is considered.
Therefore the theory of singular equations is here closely linked with
the above boundary problem. The solution of the latter will be used
for the development of the theory of singular equations; afterwards
this theory will be applied to the solution of other more complicated
boundary problems, in particular, to problems encountered in
potential theory, the theory of elasticity and in hydromechanics.

Having in mind the implications for different problems of mathe-
matical physics, some restrictions will be imposed upon the unknown
and the given functions appearing in the integral equations under
consideration or in the boundary conditions of the problems con-
sidered, which will largely simplify the investigation, but not affect
the final theory.

The fundamental tools of the investigation are Cauchy integrals,
the elementary theory of which is given in Part I together with a
number of direct simpler applications.

As regards the contents of the remaining Parts nothing will be
said here, since a preliminary idea can be gained by means of the
sufficiently detailed list of contents at the beginning of the book.





