Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSE,volume 55))

Abstract

Nineteen years ago, B. D. Josephson1 predicted a supercurrent at zero voltage between two superconducting metals, separated by a thin insulator. Today, 20–25 laboratories around the world are actively studying the possible exploitation of devices based on the Josephson effect. Although the promise of a very fast device (picosecond) at low power levels (microwatt) has yet to be realized in a computing system, usage of Josephson junctions as a voltage standard and an extremely sensitive magnetic-field detector is widespread. The attractions of Josephson devices are summarized in Table 1. The combination of a fast, low power circuit plus superconducting transmission lines offers the possibility of packing and interconnecting hundreds of thousands of circuits and hundreds of millions of memory bits into a volume very comparable to that occupied by the human brain;2 a feat unachievable with a high-performance semiconductor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. Josephson, (July 1962), Possible New Effects in Superconductive Tunnelling. Phys. Rev. Lett., vol. 1, no. 7., p. 251.

    MATH  Google Scholar 

  2. W. Anacker, (May 1979), Computing at 4 Degrees Kelvin. IEEE Spectrum, vol. 16, no. 5, p. 26.

    Google Scholar 

  3. E. A. Lynton, (1967), Superconductivity, Wiley, New York.

    Google Scholar 

  4. R. L. Kautz, (Jan. 1978), Picosecond Pulses on Superconducting Striplines. J. Appl. Phys., vol. 49, no. 1, pp. 308–314.

    Article  MathSciNet  Google Scholar 

  5. I. Giaever, (Aug. 1960), Energy Gap in Superconductors Measured by Electron Tunnelling. Phys. Rev. Lett., vol. 5, p. 147.

    Article  Google Scholar 

  6. J. Badeen L. M. Cooper and J. R. Schrieffer, (April 1957), Microscopic Theory of Superconductivity. Phys. Rev., vol. 106, p. 162; and (December 1957), Theory of Superconductivity. Phys. Rev., vol. 108, p. 1175.

    Article  MathSciNet  Google Scholar 

  7. L. Esaki, (Jan 1958), New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev., vol. 109, p. 603.

    Article  Google Scholar 

  8. H. H. Zappe and B. S. Landman, (Jan. 1978), Analysis of Resonance Phenomenon in Josephson Quantum Interference Devices. J. Appl. Phys., vol. 49, p. 344.

    Article  Google Scholar 

  9. H. H. Zappe and B. S. Landman, (July 1978), Experimental Investigation of Resonances in Low-Q Josephson Interference Devices, J. Appl. Phys., vol. 49, p. 4149.

    Article  Google Scholar 

  10. P. W. Anderson and J. M. Rowell, (1963), Probable Observation of the Josephson Superconducting Tunnelling Effect. Phys. Rev. Lett., vol. 10, p. 230.

    Article  Google Scholar 

  11. J. M.Rowell, (1963), Magnetic Field Dependencies of the Josephson Tunnel Current. Phys. Rev. Lett., vol. 11, p. 200.

    Article  Google Scholar 

  12. J. Matisoo, (1966), Subnanosecond Pair Tunnelling to Single-Particle Tunnelling Transition in Josephson Junctions. Appl. Phys. Lett., vol. 9, p. 167.

    Article  Google Scholar 

  13. B. S. Landman, (1977), Calculations of Threshold Curves for Josephson Quantum Interference Devices. IEEE Trans. Mag., vol. MAG-13, pp. 871. Also, E. O. Schultz-DuBois and P. Wolf, (Oct. 1967), Static Characteristics of Josephson Interferometers. Presented at the Int. Conf. on Superconducting Quantum Devices.

    Article  Google Scholar 

  14. R. F. Broom, W. Kotyczka and A Moser, (March 1980), Modeling of Characteristics for Josephson Junctions Having Non-Uniform Width or Josephson Current Density. IBM J. Res. Develop., vol. 24, no. 2, p. 178.

    Article  Google Scholar 

  15. T. Gheewala, (March 1980), Design of 2.5 Micrometer Josephson Current Injection Logic. IBM J. Res. Develop., vol. 24, no. 2, p. 130.

    Article  Google Scholar 

  16. W. C. Stewart, (April 1968), Current-Voltage Characteristics of Josephson Junctions. Appl. Phys. Lett., vol. 12, p. 277.

    Article  Google Scholar 

  17. D. E. McCumber, (June 1968), Effect of AC Impedence on DC Voltage-Current Characteristics of Superconducting Weak-Link Junctions. J. Appl. Phys., vol. 19, p. 3113.

    Article  Google Scholar 

  18. P. C. Arnett and D. H. Herrell, (1979), Regulated AC Power for Josephson Interferometers for Latching Logic Circuits. IEEE Trans. Magn., vol. MAG-15, p. 544.

    Google Scholar 

  19. A. Davidson, (Oct. 1978), A Josephson Latch. IEEE J. Solid-State Circuits, vol. SC-13, p. 583.

    Article  Google Scholar 

  20. T. A. Fulton and R. C. Dynes, (June 15, 1971), Switching to Zero Voltage in Josephson Tunnel Junctions. Solid-State Commun., vol. 9, p. 1069.

    Article  Google Scholar 

  21. W. Baechtold, T. Forster, W. Hellberger and Th.O. Mohr, (May 15, 9175), Complementary Josephson-Junction Circuit: A Fast Flip-Flop and Logic Gate. Electron Lett., vol. 11, no. 10, p. 203.

    Google Scholar 

  22. T. Gheewala and A. Mukherjee, (Washington DC, Dec. 3–5, 1979), Josephson Direct-Coupled Logic (DCL). IEDM Tech. Dig., p. 482.

    Google Scholar 

  23. T. A. Fulton, S. S. Pei and L. N. Dunkleberger, (May 15, 1979), A Simple High Performance Current Switched Josephson Logic. Appl. Phys. Lett., vol. 34, no. 10, p. 709.

    Article  Google Scholar 

  24. T. Gheewala, (Oct. 1979), 30-picosecond Josephson Current Injection Logic (CIL). IEEE J. Solid-State Circuits, vol. SC-14, no. 5, p. 787.

    Article  Google Scholar 

  25. E. P. Harris, (Jan. 1979), Turn-On Delay of Josephson Interferometer Logic Devices. IEEE Trans. Magn., vol. MAG-15, p. 562. Also, D. G. McDonald, R. L. Patterson, C. A. Hamilton, R. E. Harris and R. L. Kautz, (Oct. 1980), Picosecond Applications of Josephson Junctions, IEEE Trans. Electron Devices, vol. ED-27, no. 10, p. 1945.

    Article  Google Scholar 

  26. T. Gheewala, (Oct. 1980), Josephson-Logic Devices and Circuits. IEEE Trans. Electron Devices, vol. 27, no. 10, p. 1857.

    Article  Google Scholar 

  27. IBM Advanced Statistical Analysis Program, IBM Publication No. SH20–1118–0, available through IBM Branch Offices.

    Google Scholar 

  28. C. A. Hamilton, F. L. Lloyd, R. L. Peterson and J. R. Andrews, A Superconducting Sampler for Josephson Logic Circuits. Appl. Phys. Lett., vol. 35, p. 718. (Nov. 1, 1979).

    Article  Google Scholar 

  29. D. Tuckerman, (June 15, 1980), A Josephson Ultra-High Resolution Sampling System. Appl. Phys. Lett., vol. 36, p. 1008.

    Article  Google Scholar 

  30. W. H. Henkels nd H. H. Zappe, (Oct. 1978), An Experimental 64-bit Decoded Josephson NDRO Random Memory. IEEE J. Solid-State Circuits, vol. SC-13, no. 5, p. 591.

    Article  Google Scholar 

  31. H. H. Zappe, (Feb. 1975), A Subnanosecond Josephson Tunnelling Memory Cell with Non-Destructive Readout. IEEE J. Solid-State Circuits, vol. SC-10, no. 1, p. 12.

    Article  Google Scholar 

  32. H. H. Zappe, Josephson Quantum Interference Computer Devices. IEEE Trans. Magn., vol. MAG-13, p. 41, Jan. 1977.

    Article  Google Scholar 

  33. S. M. Faris, W. H. Henkels., E. A. Valsamakis and H. H. Zappe, (Mar. 1980), Basic Design of a Josephson Cache Memory. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2. p. 143.

    Google Scholar 

  34. P. Gueret, (Mar. 1975), Storage and Detection of a Single Flux Quantum in Josephson Junction Devices. IEEE Trans. Magn., vol. MAG-11, no. 2, p. 751.

    Article  Google Scholar 

  35. P. Gueret, Th.O. Möhr and P. Wolf. (Jan. 1977), Single Flux-Quantum Memory Cells. IEEE Trans. Magn., vol. MAG-13, no. 1. p. 52.

    Article  Google Scholar 

  36. H. Beha, (Sept. 1977), Two-Josephson-Junction Interferometer Memory Cell for NDRO. Electron. Lett., vol. 13, no. 20, p. 596.

    Article  Google Scholar 

  37. R. F. Broom, P. Geuret, W. Kotyczka, Th.O. Möhr, A. Moser, A. Oosenbrug and P. Wolf, (Feb. 1977), Model for a 15 ns 16 K RAM with Josephson Junctions. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, p. 60.

    Google Scholar 

  38. P. Gueret, A. Moser and P. Wolf, (Mar. 1980), Investigations for a Josephson Computer Main Memory with Single Flux Quantum Cells. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2, p. 155.

    Google Scholar 

  39. R. Guernsey and E. Flint, (May 1981), Refrigeration Requirement for Superconducting Computers. NBS special refrigeration for cryogenic sensors and electronic systems.

    Google Scholar 

  40. J. E. Zimmermann and D. B. Sullivan, (1979), A Milliwatt Sterling Cycle Cryocooler for Temperatures below 4°K, Cryogenics, vol. 19, p. 170.

    Article  Google Scholar 

  41. D. B. Sullivan and J. E. Zimmermann, (1979), Very Low Power Sterling Cryocooler Using Plastic and Composite Materials. Int. J. Refrig., vol. 2, p. 211.

    Article  Google Scholar 

  42. J. H. Greiner, et al. (Mar. 1980), Fabrication Process for Josephson Integrated Circuits. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2, p. 195.

    MathSciNet  Google Scholar 

  43. R. F. Broom, S. I. Raider, A. Oosenbrug, R. E. Drake and W. Walter, (Oct. 1980), Niobium Oxide Barrier Tunnel Junction. IEEE Trans. Electron Devices, vol. ED-27, no. 10, p. 1998.

    Article  Google Scholar 

  44. A. V. Brown, (March 1980), An Overview of Josephson Packaging. IBM J. Res. Develop., vol. 21, no. 2, p. 167.

    Article  Google Scholar 

  45. R. F. Broom and Th.O. Möhr, (May/June 1978), Studies on Arrays of Josephson Tunnel Junction Interferometers. J. Vac. Sei. Technol., vol. 15, p. 1166.

    Article  Google Scholar 

  46. W. Anacker, (March 1980), Josephson Computer Technology: An IBM Research Project. IBM J. Res. Develop., vol. 24, no. 2 p. 107.

    Article  Google Scholar 

  47. R. F. Broom, A. Oosenbrug and W. Walter, (1980), Josephson Junctions of Small Area Formed on the Edge of Niobium Films. Appl. Phys. Lett., vol. 37, p. 237.

    Article  Google Scholar 

  48. T. Van Duzer (May 1980), Proceedings of Second International Conference on Superconductivity Quantum Devices, West Berlin.

    Google Scholar 

  49. W. Baechtold, (1980), Josephson High-Performance Logic. Proc. IEEE Int. Conf. on Circuits and Computers, ICCC 80, vol.2, p. 879.

    Google Scholar 

  50. K. E. Gray, (Mar. 15, 1978), A Superconducting Transistor. Appl. Phys. Lett., vol. 36, no. 6, p. 392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this paper

Cite this paper

Van Derveer, E.J. (1982). Josephson Integrated Circuits. In: Esaki, L., Soncini, G. (eds) Large Scale Integrated Circuits Technology: State of the Art and Prospects. NATO Advanced Study Institutes Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7645-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7645-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7647-4

  • Online ISBN: 978-94-009-7645-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics