Skip to main content

Flotation in Mineral Processing

  • Chapter
The Scientific Basis of Flotation

Part of the book series: NATO ASI Series ((NSSE,volume 75))

Abstract

Few of the metals or minerals required by modern civilisation are mined naturally pure and ready to use. Instead they occur in complex aggregates of up to twenty different minerals of which only one or two will be of value. There are some two hundred of these ‘value’ minerals amoung the several thousand minerals that go to form the earth’s crust. The number of combinations of minerals that can occur with a valuable component is therefore very large and each deposit (ore) containing nominally the same valuable minerals will differ materially from all others. Consequently, the best separation process for a particular ore is closely related to its overall mineralogy and not to just the nature of the valuable components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parks, G. A., Aqueous surface chemistry of oxides and complex oxide minerals. Advances in Chemistry No. 67, 121 - 160, 1967.

    Article  Google Scholar 

  2. Shergold, H. L. and Kitchener, J. A., A surface chemical study of adsorption of flotation collectors on a Swedish hematite. Int.J.Mineral Process. 2, 249–265, 1975.

    Article  CAS  Google Scholar 

  3. Fuerstenau, D. W., Interfacial processes in mineral/water systems. Pure Appl.Chem. 24, 135–164, 1970

    Article  CAS  Google Scholar 

  4. Hunter, R. J. Zeta potential in colloid science. Academic Press, London, 1981, 386 pp.

    Google Scholar 

  5. Fuerstenau, D.W. and Raghavan, S., The crystal chemistry, surface properties and flotation behaviour of silicate minerals, XII Inter.Mineral Proc.Congr. Brazil, 1977.

    Google Scholar 

  6. Cases, J. M., Point de charge nulle et structure des silicates. J.Chim.Phys. 66, 1602–1611, 1969.

    CAS  Google Scholar 

  7. Hanna, H. S. and Somersundaran, P., Flotation of salt-type minerals in Flotation,A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M.C., Vol.1, A.I.M.E., N.Y.,1976.

    Google Scholar 

  8. Healy, T. W. and Moignard, M. S., A review of electrokinetic studies of metal sulphides in Flotation,A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M.C., Vol.1, A.I.M.E., N.Y. 1976.

    Google Scholar 

  9. Moignard, M. J., Dixon, D. R. and Healy, T.W., Electrokinetic properties of the zinc sulphide-water and nickel sulphide-water interfaces. Proc.Aust.Instn.Min.Metal. 263, 31–68, 1977.

    Google Scholar 

  10. Gardner, J. R.and Woods, R., An electrochemical investigation of the natural flotability of chalcopyrite. Int.J.Mineral Proc. 6, 1–16, 1979.

    Article  CAS  Google Scholar 

  11. Shergold, H. L. and Hartley, C., The surface chemistry of diamond. Int.J.Mineral Process (to be published).

    Google Scholar 

  12. Gaudin, A. M. and Fuerstenau, D.W., Quartz flotation with cationic collectors, Trans.A.I.M.E. 202, 958–962, 1955.

    Google Scholar 

  13. Fuerstenau, D.W. and Raghavan, S., Some aspects of the thermodynamics of flotation. In Flotation A.M. Gaudin Memorial Volume, Ed. Fuerstenau, M.C. A.I.M.E., 21–65, 1976.

    Google Scholar 

  14. Wakamatsu, T. and Fuerstenau, D.W., Effect of alkyl sulphonates on the wettability of alumina. Trans.A.I.M.E., 254, 123–126, 1973.

    CAS  Google Scholar 

  15. Fuerstenau, D.W., The adsorption of surfactants at solid.water interfaces. In The chemistry of biosurfaces Vol.1, Ed. Hair M.L. Marcell Dekker Inc.N.Y. 143–176, 1971.

    CAS  Google Scholar 

  16. Shergold, H. L. and Stratton-Crawley, R., Extraction of Titanium dioxide into oil from anionic surfactant solutions, Coloids and Surfaces 3, 253–265, 1981.

    Article  CAS  Google Scholar 

  17. Atademir, M. R., Kitchener, J. A. and Shergold, H. L., The surface chemistry and flotation of scheelite 11 Flotation collectors. Int.J.Mineral Proc. 8, 9–16, 1981.

    Article  CAS  Google Scholar 

  18. Fuerstenau, M.C. and Miller, J. D., The role of the hydrocarbon chain in anionic flotation of calcite. Trans A.I.M.E., 238, 153–160, 1967.

    CAS  Google Scholar 

  19. Peck, A.S. and Wadsworth, M. E., Infrared studies of oleic acid and sodium oleate adsorption on fluorite, barite and calcite. U.S.Bur,Mines RI 6202, 1963.

    Google Scholar 

  20. Lovell, V. M. Goold,L. A. and Finkelstein, N. P., I.R. studies of the adsorption of oleate species on calcium fluoride. Int.J.Mineral Proc. 1, 183–192, 1974.

    Article  CAS  Google Scholar 

  21. Parkins, E. J.and Shergold, H. L., The effect of temperature on the conditioning and flotation of an ilmenite ore. In Flotation A.M. Gaudin Memorial Volume, Ed. Fuerstenau, M.C., Vol.1, 561–579, A.I.M.E., N.Y., 1976.

    Google Scholar 

  22. Manser, R., Handbook of silicate flotation, Warren Spring Laboratory (Crown copyright), 1975.

    Google Scholar 

  23. Raghavan, S. and Fuerstenau, D. W., Adsorption of aqueous octylhydroxamate on ferric oxide. J.Colloid and Interf.Sci. 50, 319–330, 1975.

    Article  CAS  Google Scholar 

  24. Palmer, B. R., Gutierrez, B.G.and Fuerstenau, M. C., Mechanisms involved in the flotation of oxides and silicates with anionic collectors. Trans.A.I.M.E., 258, 257–263, 1975.

    Google Scholar 

  25. Bustamante, H., Flotation of zinc oxide minerals with chelating agents, Ph.D. University of London, 1979.

    Google Scholar 

  26. Rinelli, G. Marabine, A. M.and Alesse,V., Flotation of cassiterite with salicylaldehyde as a collector. In flotation A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M.C., Vol.1, 549–560, A.I.M.E., N.Y., 1976.

    Google Scholar 

  27. Granville, A.,Kinelstein, N. P. and Allison, S. A., Review of reactions in the flotation system galena-xanthate-oxygen. Trans.IMM 81, Cl–30, 1972.

    Google Scholar 

  28. Gutierrez, C., The mechanism of flotation of galena by xanthates, Min.Sci.Engng. 5, 108–118, 1973.

    CAS  Google Scholar 

  29. Leja, J.,Little, L. H. and Poling, G. W., Xanathate adsorption studies using infrared spectroscopy. Part II, Evaporated lead sulphide, galena and metallic lead substrates. Trans. IMM. 72 414–423, 1963.

    Google Scholar 

  30. Greenler, R. G., An infrared investigation of xanthate adsorption by lead sulphide. J.Phys.Chem 66, 879–883, 1962.

    Article  CAS  Google Scholar 

  31. Mellgren, O., Heats of adsorption and surface reactions of potassium ethyl xanthate on galena. Trans.A.I.M.E. 235, 46–60, 1966.

    CAS  Google Scholar 

  32. Plaksin, I. N.,Shefeev, R. Sh. and Chanturia, V. A., Relationship between energy structure of mineral crystals and their flotation properties. 8th Int.Mineral Proc.Congr., Leningrad USSR, 1968.

    Google Scholar 

  33. Salamy, S. G. and Nixon, J. C., The application of electrochemical methods to flotation research. Recent devlopments in mineral dressing. IMM, London, 1953.

    Google Scholar 

  34. Woods, R., The oxidation of ethyl xanthate on platinum, gold copper and galena electrodes, relation to the mechanism of mineral flotation, J.Phys.Chem. 75, 354–362, 1971.

    Article  CAS  Google Scholar 

  35. Woods, R., Electrochemistry of sulphide flotation, In flotation A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M. C., Vol.1, 298–333, A.I.M.E., N.Y. 1976.

    Google Scholar 

  36. Allison, S. A., Goold, L. A.,Nicol, M. J. and Granville, A., determination of the products of reaction between various sulphide minerals and aqueous xanthate solution, and a corelation of the products with electrode rest potentials. Met.Trans. 3, 2613–2618, 1972.

    Article  CAS  Google Scholar 

  37. Chandler, S. and Fuerstenau, D. W., The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulphide in aqueous solutions. Electroanalytical chem and interf. chem. 46, 411–420, 1973.

    Article  Google Scholar 

  38. Read, A.D. and Manser, R. M., The action of fluoride as a modifying agent in silicate flotation. Mineral Processing Information Note Nos.8, Warren Spring Laboratory,1975.

    Google Scholar 

  39. Iler, R. K., The chemistry of silica, J. Wiley and Sons, New York, 1979.

    Google Scholar 

  40. Smith, R.W., Activation of beryl and felspars by fluorides in cationic collector systems. Trans.A.I.M.E. 232, 160–170, 1965.

    CAS  Google Scholar 

  41. Smith, R. W.and Akhtar, S., Cationic flotation of oxides and silicates. In Flotation A.M.Gaudin Memorial Volume,Ed. Fuersteunau, M.C., Vol. 1, 87–116,A.I.M.E.,N.Y.,1976.

    Google Scholar 

  42. Warren, L. J. and Kitchener, J. A., Role of fluoride in the fotation of feldspar: adsorption of quartz, corundum and potassium fledspar. Trans.IMM. 81, C137–147, 1972.

    Google Scholar 

  43. Fuerstenau, M. C. and Palmer, B. R., Anionic flotation of oxides and silicates. In Flotation A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M.C. Vol.1, 148–196, A.I.M.E., N.Y.,1976.

    Google Scholar 

  44. James, R. O. and Healy, T. W., Adsorption of hydrolyzable metal ions at the oxide-water interface. Parts I, II and III, J.Coll.Interf.Sci. 40, 42–81, 1972.

    Article  CAS  Google Scholar 

  45. Fuerstenau, M. C., Elgillani, D. A. and Miller, J. D., Adsorption mechanisms in non-metallic activation systems. Trans A.I.M.E., 247, 11–13, 1970.

    CAS  Google Scholar 

  46. Balaljee, S. R. and Iwasaki, I., Adsorption mechanisms of starches in flotation and flocculation of iron ores. Trans.A.I.M.E., 244, 401–406, 1969.

    Google Scholar 

  47. Schultz, N. F and Cooke, S. R. B., Froth flotation of iron ores. Ind.Engng.Chem. 45, 2767–2772, 1953.

    Article  Google Scholar 

  48. Balajee, S. R. and Iwasaki, I., Interaction of British gum and dodecylamine chloride at quartz and hematite surfaces. Trans.A.I.M.E. 244, 407–411, 1969.

    CAS  Google Scholar 

  49. Iwasaki, I., and Lai, R.W., Starches and starch products as depressants in soap flotation of activated silica from iron ores. Trans.A.I.M.E. 364–371, 1965.

    Google Scholar 

  50. Harman, R. W., Aqueous solutions of sodium silicates. J.Phys.Chem. 32, 44–60, 1928.

    Article  CAS  Google Scholar 

  51. Ingri. N., Equilibrium studies of polyanions IV silicate ions in NaCl medium. Acta Chem.Scan. 13, 758–775, 1959.

    Article  CAS  Google Scholar 

  52. Lassen, V. I. and Mokrousov, V. A., An introduction to the theory of flotation. London,Butterworths, 1963.

    Google Scholar 

  53. Sollenberger, C. L., and Greenwalt, R. B., Relative effectiveness of sodium silicates and different Si02,Na20 on gangue depressants in non-metallic flotation. Mm.Engng. 10 (6). 691–693, 1958.

    CAS  Google Scholar 

  54. Marinakis, K. I., The action of sodium silicate on the flotation of salt-type minerals with oleic acid. Ph.D. thesis, University of London, 1980.

    Google Scholar 

  55. Carta, M., Ghiani, M. and Massaci, P., Control of CaF2 and CaCO3 flotation by mixtures of sodium silicate and metallic salts. Rev.Ind.Miner. 50 (5), 375–87, 1968.

    CAS  Google Scholar 

  56. Abeidu, A. M.,Selective depression of calcite from fluorite. Trans IMM, 82, C49–50, 1975.

    Google Scholar 

  57. Berlinskii, A.I., Kuznetsova, L.N. and Serebryanyi,B.L., Adsorption of oleic acid and water glass by some non-sulphide minerals in connection with their floatability. Tr.Tsent. Nauch-Issled. Gornorazved.Inst. 82, 201–211, 1969. Chem.Abstr. 74, 144780e.

    Google Scholar 

  58. Berlinskii, A. I.and Frenkina, Ts. B., Statistical analysis of the effectiveness of using acid water glass and spraying the froth with water under industrial flotation conditions. Tr.Tsent.Nauch-Issled.Gornorazved.Inst. 82, 228–236, 1969. Chem.Abstr. 74, 114610g.

    Google Scholar 

  59. Glembotskii, V. A. and Uvarov, V. S., The mechanism of action of sodium silicate during the flotation of several non-sulphide minerals. Dokl.Akad.Nauk.Tadzh.USSR. 7(2), 29–32, 1964. Chem.Abstr. 61, 7979c.

    CAS  Google Scholar 

  60. Du Rietz, C., Fatty acids in flotation. Progress in Mineral Dressing, Transactions of the 4th Int.Min.Pres.Congr. Stockholm, 1957, Almquist and Wiksell, Pub. 1958, 417–533.

    Google Scholar 

  61. Hanna, H. S., Adsorption of some starches on particles of spar minerals. Recent advances in science and technology, Ed. A. Bishay, Plenum, Vol.1, 1974, 365–374.

    Google Scholar 

  62. Somasundaran, P., Adsorption of starch and oleate and interaction between them on calcite in aqueous solution. J.Coll.Interf.Sci. 31, 557–565, 1969.

    Article  CAS  Google Scholar 

  63. Blazy, P., Houot, R. and Cases, J., Recovery and selectivity in treatment of fluorite. 7th International Mineral Processing Congress, New York, 1964, Vol.1, Gordon and Breach, 405–413.

    Google Scholar 

  64. Schulze, H. J.,Hanna, H. S. and Bilsing, U., The adsorption of tannins on the surface of calcite and fluotite in relation to the floatability of these minerals. Freiberger Forschungsh A476, 33–57. 1970.

    CAS  Google Scholar 

  65. Iskra, J., Gutierrez, C. and Kitchener, J. A., Influence of quebracho on flotation of fluorite, calcite, hematite and quartz with oleate as collector. Trans.IMM 82, C73–78, 1973.

    CAS  Google Scholar 

  66. Gaudin, A. M., Flotation, McGraw-Hill, New York, 1957.

    Google Scholar 

  67. Elgillani, D. A. and Fuerstenau, M. C., Mechanisms invloved in the cyanide depression of pyrite. Trans. SME/AIME, 241, 437– 445, 1968.

    Google Scholar 

  68. Shimoiizaka, J., Usui, S., Marsuoka, I. and Sasaki, H., Depression of galena flotation by sulphite or chrornate ion. Flotation A.M.Gaudin Memorial Volume, Ed. Fuerstenau, M. C. Vol.1, A.I.M.E., 393–413, 1976.

    Google Scholar 

  69. Okada, S. and Majima, H., Depressive action of chromate and dichromate salts on galena. Can.Met.Quart. 10 (3), 189–195, 1971.

    CAS  Google Scholar 

  70. Finkelstein, N. P. and Allison, S. A., The chemistry of activation, deactivation and depression in the flotation of zinc sulphide: a review. In Flotation A.M.Gaudin Memorial Volume Ed. Fuerstenau, M. C., Vol.1., A.I.M.E., N.Y., 414–457, 1976.

    Google Scholar 

  71. Woods, R., Mineral flotation in Comprehensive treatise of electrochemistry, Vol.2, Ed. Bockris, J. O’M., Conway, B. E., Yeager, E. and White, R. E., Plenum Publ. Corp. 571–595, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Shergold, H.L. (1984). Flotation in Mineral Processing. In: Ives, K.J. (eds) The Scientific Basis of Flotation. NATO ASI Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6926-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6926-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6928-5

  • Online ISBN: 978-94-009-6926-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics