Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 10))

  • 188 Accesses

Abstract

Photosynthesis may be defined as the assimilation of CO2 by plants in light to form carbohydrates. The basic processes, which are probably similar in all plants, have been covered recently in a number of excellent reviews (1, 2, 3, 4, 5). Briefly, the starting point from a biophysical point of view is the excitation of a light harvesting pigment (chlorophyll) by an absorbed light quantum. In higher plants, chlorophyll is localized in discrete cellular organelles, the chloroplasts. These are surrounded by an envelope that delineates the pigmented internal membrane network and stroma from the cytoplasm of the host cells. The chloroplast envelope contains carotenoids but no chlorophyll. The majority of light-absorbing pigments serve simply as light harvesters which transfer the absorbed energy to a relatively few specialized sites (reaction centres) for trapping (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards G, Walker D. 1983. C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  2. Govindjee. 1982. ed, Photosynthesis I. Energy Conversion by Plants and Bacteria, Academic Press, New York.

    Google Scholar 

  3. Govindjee. 1982. ed, Photosynthesis I I. Development, Carbon Metabolism and Plant Productivity, Academic Press, New York.

    Google Scholar 

  4. Halliwell B. 1981. Chloroplast Metabolism, The Structure and Function of Chloroplasts in Green Leaf Cells, Clarendon Press, Oxford.

    Google Scholar 

  5. Hatch MD, and Boardman N K. 1981. eds, The Biochemistry of Plants, Vol 8, Photosynthesis, Academic Press, New York.

    Google Scholar 

  6. Cogdell RJ. 1983. Photosynthetic reaction centers. Ann. Rev. Plant Physiol. 34: 21 – 45.

    Article  CAS  Google Scholar 

  7. Watson DJ. 1952. The phyiological basis of variation in yield. Adv. Agron. 4: 101 – 145.

    Article  Google Scholar 

  8. Hesketh JD. 1963. Limitations to photosynthesis responsible for differences among species. Crop Sci. 3: 493 – 496.

    Article  Google Scholar 

  9. Hesketh JD, and Moss DN. 1963. Variations in the response of photosynthesis to light. Crop Sci. 3: 107 – 110.

    Article  Google Scholar 

  10. Kortschak HP, Hartt CE, and Burr GO. 1965. Carbon dioxide fixation in sugarcane leaves. Plant Physiol. 40: 209 – 213.

    Article  PubMed  CAS  Google Scholar 

  11. Hatch MD, Slack, CR. 1966. Photosynthesis by sugar cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101: 103 – 111.

    PubMed  CAS  Google Scholar 

  12. Wells R, Shulze LL, Ashley D A, Boerma HR, Brown RH. 1982. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci. 22: 886 – 890.

    Article  Google Scholar 

  13. Buttery BR, Buzzell RI, Findlay WI. 1981. Relationships among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can. J. Plant Sci. 61: 191 – 198.

    Article  Google Scholar 

  14. Elmore CD 1980. The paradox of no correlation between leaf photosynthetic rates and crop yields. In. Hesketh J D, and Jones J W, eds, Predicting Photosynthesis for Ecosystem Models, Vol II, CRC Press, Boca Raton, FL, pp 155 – 167.

    Google Scholar 

  15. Zelitch I. 1982. The close relationship between net photosynthesis and crop yield. Bioscience 32: 796 – 802.

    Article  Google Scholar 

  16. Planchon C, Fesquet J. 1982. Effect of the D genome and of selection on photosynthesis in wheat. Theor. Appl. Genet. 61: 359 – 365.

    Google Scholar 

  17. Nichiporovich AA. 1975. The genetics of photosyn¬thesis and rational means of breeding highly productive plants. In. Nasyrov YE, and Sestak Z, eds, Genetic Aspects of Photosynthesis, Dr. W Junk Publishers, The Hague, pp 315 – 341.

    Google Scholar 

  18. Osmond CB. 1978. Crassulacean acid metabolism: a curiosity in context. Ann. Rev. Plant Physiol. 29: 379 – 414.

    Article  CAS  Google Scholar 

  19. Kluge M. 1982. Crassulacean acid metabolism (CAM). In. Govindjee, ed, Photosynthesis II. Development, Carbon Metabolism and Plant Productivity, Academic Press, New York, pp 231 – 262.

    Google Scholar 

  20. Neales TF, Treharne KJ, and Wareing PF. 1971. A relationship between net photosynthesis, diffusive resistance, and carboxy1 ating enzyme activity in bean leaves. In. Hatch MD, Osmond CB, Slayter RO, eds, Photosynthesis and Photorespiration, Wiley-Interseience, New York, pp 89-96.

    Google Scholar 

  21. Makino A, Mae T, Ohira K. 1983. Photosynthesis and ribulose 1, 5-bisphosphate carboxylase in rice leaves. Changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiol. 73: 1002 – 1007.

    Article  PubMed  CAS  Google Scholar 

  22. Hesketh JD, Ogren WL, Hageman ME, Peters DB. 1981. Correlations among leaf CO2~exchange rates, areas and enzyme activities among soybean cultivars. Photosynthesis Res. 2: 21 – 30.

    Article  CAS  Google Scholar 

  23. Bhagsari A S, Ashley D A, Brown R H and Boerma H R. 1977. Leaf photo synthetic characteristics of determinate soybean cultivars. Crop Sci. 17: 929 – 932.

    Article  CAS  Google Scholar 

  24. Curtis P E, Ogren W L, and Hageman R H. 1969. Varietal effects in soybean photosynthesis and photorespiration. Crop Sci. 9: 323 – 327.

    Article  Google Scholar 

  25. Dornhoff G M, and Shibles R. 1976. Leaf morphology and anatomy in relation to C02~exchange rate of soybean leaves. Crop Sci. 16: 377 – 381.

    Article  Google Scholar 

  26. Criswell J G, and Shibles R M. 1971. Physiological basis for genotypic variation in net photosynthesis of oat leaves. Crop Sci. 11: 550 – 553.

    Article  Google Scholar 

  27. Nelson C J, Asay K H, and Patton L D. 1975. Photo- synthetic responses of tall fescue to selection for longevity below the CO2 compensation point. Crop Sci. 15: 629 – 633.

    Article  Google Scholar 

  28. McCashin B G, and Canvin D T. 1979. Photosynthetic and photorespiratory characteristics of mutants of Hordeum vulgare L. Plant Physiol. 64: 354 – 360.

    Article  PubMed  CAS  Google Scholar 

  29. Bauer H, Martha P, Kirchner-Heiss B, and Mairhofer I. 1983. The CO2 compensation point of C3 plants-a re-examination. II. Intraspecific variability. Z. Pflanzenphysiol. 109: 143 – 154.

    CAS  Google Scholar 

  30. El-Sharkawy M, and Hesketh J. 1965. Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances. Crop Sci. 5: 517 – 521.

    Article  Google Scholar 

  31. Raven J A, and Glidewell S M. 1981. Processes limiting photosynthetic conductance. In. Johnson C B, ed, Physiological Processes Limiting Plant Productivity, Butterworths, London, pp 109 – 136.

    Google Scholar 

  32. Wilson D, and Cooper J P. 1969. Diallel analysis of photosynthetic rate and related leaf characters among contrasting genotypes of Lolium perenne. Heredity 24: 633 – 649.

    Article  Google Scholar 

  33. Nobel P S, Zaragoza L J, and Smith W K. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiol. 55: 1067 – 1070.

    Article  PubMed  CAS  Google Scholar 

  34. Molin W T, Meyers S P, Baer G R, and Schrader L E. 1982. Ploidy effects in isogenic populations of alfalfa. II. Photosynthesis, chloroplast number, ribulose-1, 5-bisphosphate carboxylase, chlorophyll, and DNA in protoplasts. Plant Physiol 70: 1710 – 1714.

    Article  PubMed  CAS  Google Scholar 

  35. Meyers S P, Nichols S L, Baer G R, Molin W T, and Schrader L E. 1982. Ploidy effects in isogenic populations of alfalfa. I. Ribulose-1,5-bisphosphate carboxylase, soluble protein, chlorophyll, and DNA in leaves. Plant Physiol. 70: 1704 – 1709.

    Article  PubMed  CAS  Google Scholar 

  36. Butterfass T. 1979. Patterns of Chloroplast Reproduction. Springer-Verlag, New York.

    Google Scholar 

  37. Wiebold W J, Shibles R, and Green D E. 1981. Selection for apparent photosynthesis and related leaf traits in early generations of soybeans. Crop Sci. 21: 969 – 973.

    Article  Google Scholar 

  38. Nooden L D. 1980. Senescence in the whole plant. In. Thimann K V, ed, Senescence in Plants, CRC Press, Boca Raton, FL, pp 219 – 258.

    Google Scholar 

  39. Elmore C D, Hesketh J D, and Muramoto H. 1967. A survey of rates of leaf growth, leaf aging and leaf photosynthetic rates among and within species. J. Arizona Acad. Sci. 4: 215 – 219.

    Article  Google Scholar 

  40. Sestak, Z. 1977. Photosyntheti c characteristics during ontogenesis of leaves. 2. Photosystems, components of electron transport chain, and photophosphorylations. Photosynthetica 11: 449 – 474.

    CAS  Google Scholar 

  41. Huffaker R C, and Peterson L W. 1974. Protein turnover in plants and possible means of its regulation. Anir. Rev. Plant Physiol. 25: 363 – 392.

    Article  CAS  Google Scholar 

  42. Secor J, Shibles R, and Stewart C R. 1983. Metabolic changes in senescing soybean leaves of similar plant ontogeny. Crop Sci. 23: 106 – 110.

    Article  CAS  Google Scholar 

  43. Wittenbach V A. 1979. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiol. 64: 884 – 887.

    Article  PubMed  CAS  Google Scholar 

  44. Woolhouse H W. 1982. Leaf senescence. In. Smith H,and Grierson D, eds, The Molecular Biology of Plant Development, University of California Press, Los Angeles, pp 256 – 281.

    Google Scholar 

  45. Secor J, Ford D M, and Shibles R. 1982. Ontogenetic changes in ribulose-1,5-bisphosphate carboxylase- oxygenase activity in soybean leaves. Plant Sci. Letters 27: 147 – 154.

    Article  CAS  Google Scholar 

  46. Moller G, Stamp P, and Geisler G. 1977. Photometric estimation of the activity of phosphoenolpyruvate carboxylase in maize leaves as depending on plant development. Z. Pf1anzenernahrung Bodenkd. 140: 481 – 490.

    Article  Google Scholar 

  47. Preiss J, and Kosuge T. 1970. Regulation of enzyme activity in photosynthetic systems. Ann. Rev. Plant Physiol. 21: 433 – 466.

    Article  CAS  Google Scholar 

  48. Anderson L E, Ashton A R, Mohamed A H, and Scheibe R. 1982. Light/dark modulation of enzyme activity in photosynthesis. Bioscience 32: 103 – 107.

    Article  CAS  Google Scholar 

  49. Schopfer P. 1977. Phytochrome control of enzymes. Ann. Rev. Plant Physiol. 28: 223 – 252.

    Article  CAS  Google Scholar 

  50. Buchanan B B. 1980. Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31: 341 – 374.

    Article  CAS  Google Scholar 

  51. Farquhar G D, von Caemmerer S, and Berry J A 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78 – 90.

    Article  CAS  Google Scholar 

  52. Zelitch I. 1971. Photosynthesis, Photorespiration, and Plant Productivity. Academic Press, New York.

    Google Scholar 

  53. Biscoe P V, Scott R K, and Monteith J L. 1975. Barley and its environment. III. Carbon budget of the stand. J. Appl. Ecol. 12: 269 – 293.

    Article  CAS  Google Scholar 

  54. Ehleringer J R. 1978. Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia (Berl) 31: 255 – 267.

    Article  Google Scholar 

  55. Ray T B, and Black C C. 1979. The C4 pathway and its regulation. In. Gibbs M, and Latzko E, eds, Photosynthesis II, Photosynthetic Carbon Metabolism and Related Processes, Springer-Verlag, Berlin, pp 75 – 101.

    Google Scholar 

  56. Day D A, and Hatch M D. 1981. Transport of 3-phosphoglyceric acid, phosphoenolpyruvate, and inorganic phosphate in maize mesophy11 chloroplasts, and the effect of 3-phosphoglyceric acid on malate and phosphoenolpyruvate production. Archiv. Biochem. Biophys. 211: 743 – 749.

    Article  CAS  Google Scholar 

  57. Gifford R M, and Jenkins C L D. 1982. Prospects of applying knowledge of photosynthesis toward improving crop production. In. Govindjee, ed, Photosynthesis II Development, Carbon Metabolism, and Plant Productivity, Academic Press, New York, pp 419 – 457.

    Google Scholar 

  58. Austin R B, Morgan C L, Ford M A, and Bhagwat S G. 1982. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann. Bot. 49: 177 – 189.

    Google Scholar 

  59. Cook M G, and Evans L T. 1983. Some physiological aspects of the domestication and improvement of rice (Oryza spp.). Field Crops Res. 6: 219 – 238.

    Article  Google Scholar 

  60. Gordon A J, Hesketh, J D, and Peters D B. 1982. Soybean leaf photosynthesis in relation to maturity classification and stage of growth. Photosynthesis Res. 3: 81 – 93.

    Article  Google Scholar 

  61. Crosbie T M, Mock J J, and Pearce R B. 1977. Variability and selection advance for photosynthesis in Iowa Stiff Stalk Synthetic maize population. Crop. Sci. 17: 511 – 514.

    Article  Google Scholar 

  62. Lorimer G H, and Andrews T J. 1981. The C? chemo- and photorespiratory carbon oxidation cycle. In. Hatch M D, and Boardman N K, eds, The Biochemistry of Plants, Vol 8, Photosynthesis, Academic Press, New York, pp 329 – 374.

    Google Scholar 

  63. Spalding M H, Spreitzer R J, and Ogren W L. 1983. Carbonic anhydrase-deficient mutant of Chlamydomonas reinhardii requires elevated carbon dioxide concentration for photoautotrophic qrowth. Plant Physiol. 73: 268 – 272.

    Article  PubMed  CAS  Google Scholar 

  64. Reed M L, and Graham D. 1981. Carbonic anhydrase in plants: Distribution, properties and possible physio¬logical roles. Prog. Phytochem. 7: 47 – 94.

    CAS  Google Scholar 

  65. Bidwell R G S. 1983. Carbon nutrition of plants: Photosynthesis and respiration. In. Steward F C, and Bidwell R G S, eds, Plant Physiology, A Treatise, Vol VII, Energy and Carbon Metabolism, Academic Press, New York, pp 287 – 457.

    Google Scholar 

  66. Robinson S P, and Walker D A. 1981. Photosynthetic carbon reduction cycle. In. Hatch M D, and Boardman N K, eds, The Biochemistry of Plants, Vol 8, Photosynthesis, Academic Press, New York, pp 193 – 236.

    Google Scholar 

  67. Bird I F, Cornelius M J and Keys A J. 1982. Affinity of RuBP carboxylases for carbon dioxide and inhibition of the enzymes by oxygen. J. Exp. Bot. 33: 1004 – 1013.

    Article  CAS  Google Scholar 

  68. Takabe T, and Akazawa T. 1975. Molecular evolution of ribulose-1, 5-bisphosphate carboxylase. Plant Cell Physiol. 16: 1049 – 1060.

    CAS  Google Scholar 

  69. Wildman S G, Chen K, Gray J C, Kung S D, Kwanyuen P, and Sakano K. 1975. Evolution of ferredoxin and fraction I protein in the genus Nicotiana. In. Birky C W, Perlman P S, and Byers T J, eds, Genetics and Biogenesis of Mitochondria and Chloroplasts, Ohio State University Press, Columbus, pp 309 – 329.

    Google Scholar 

  70. Yeoh H-H, Badger M R, and Watson L. 1980. Variations in Km(C02) of ribulose-1,5-bisphosphate carboxylase among grasses. Plant Physiol. 66: 1110 – 1112.

    Article  PubMed  CAS  Google Scholar 

  71. Chen T M, Brown R H, and Black C C. 1970. CO2 compensation concentration, rate of photosynthesis, and carbonic anhydrase ctivity of plants. Weed Sci. 18: 399 – 403.

    CAS  Google Scholar 

  72. Rathnam C K M, and Chollet R. 1979. Photosynthetic carbon metabolism in Panicum miliodes, a C3-C4 intermediate spescies: Evidence for a limited C4 dicarboxylic acid pathway of photosynthesis. Biochim. Biophys. Acta 548: 500 – 519.

    Article  PubMed  CAS  Google Scholar 

  73. Ku M S B, Monson R K, Littlejohn R O, Nakamoto H, Fisher D B, and Edwards G E. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species. I. Leaf anatomy, photosynthetic responses to O2 and C02, and activities of key enzymes in the C3 and C4 pathways. Plant Physiol. 71: 944 – 948.

    Article  PubMed  CAS  Google Scholar 

  74. Winter K, Usuda H, Tsuzuki M, Schmitt M, Edwards G E, Thomas R J, and Evert R F. 1982. Influence of nitrate and ammonia on photosynthetic characteristics and leaf anatomy of Moricandia arvensis. Plant Physiol. 70:616 – 625.

    Article  PubMed  CAS  Google Scholar 

  75. Ohnishi J, and Kanai R. 1983. Differentiation of photorespiratory activity between mesophyll and bundle-sheath cells of C4 plants. I. Glycine oxidation by mitochondria. Plant Cell Phyisol. 24: 1411 – 1420.

    CAS  Google Scholar 

  76. Latche J C, Viala G, Calm£s J, and Cavalig G. 1978. Etude comparative du m£tabolisme photorespiratoire chez differentes vari£tes de soja. Ann. Amelior. Plantes 28: 77 – 87.

    CAS  Google Scholar 

  77. Kuo C G, Hsu F H, Tsay J S, and Park H G. 1980. Variation in specific leaf weight and RuDPCase activity in mungbean. Can. J. Plant Sci. 60: 1059 – 1062.

    Article  CAS  Google Scholar 

  78. Murthy K K, and Singh M. 1979. Photosynthesis, chlorophyll content and ribulose diphosphate carboxylase activity in relation to yield in wheat genotypes. J. Agric. Sci. Camb. 93: 7 – 11.

    Article  CAS  Google Scholar 

  79. Rinehart C A, Tingey S V, and Andersen W R. 1983. Variability of reaction kinetics for ribulose-1,5- bisphosphate carboxylase in a barley population. Plant Physiol. 72: 76 – 79.

    Article  PubMed  CAS  Google Scholar 

  80. Garrett M K. 1978. Control of photorespirati on at RuBP carboxylase/oxyaenase level in ryegrass cultivars. Nature 274: 913 – 915.

    Article  CAS  Google Scholar 

  81. McNeil P H, Foyer C H, Walker D A, Bird I F, Cornelius M J, and Keyes A J. 1981. Similarity of ribulose-1, 5-bisphosphate carboxylases of isogenic diploid and tetraploid ryegrass (Lolium perenne L.) cultivars. Plant Physiol. 67: 530 – 534.

    Article  PubMed  CAS  Google Scholar 

  82. Meyers S P, Brinegar A C, Schrader L E, Jordan D B, and Ogren W L. 1983. Ploidy effects in isogenic populations of alfalfa (Medicago sativa L). IV. Similarity in physical and kinetic properties of ribulose-1,5- bisphosphate carboxylase/oxygenase. Plant Phyisol. 71: 966 – 968.

    Article  CAS  Google Scholar 

  83. Hoi brook G P, Keys A J, and Leech R M. 1984. Biochemistry of photosynthesis in species of Triticum of differing ploidy. Plant Physiol. 74: 12 – 15.

    Article  Google Scholar 

  84. Ward D A, and Woolhouse H W. 1982. Photosynthetic characteristies of Paspalum conjugatum, a shade-adapted C4 grass. John Innes Institute Report 72: 155 – 158.

    Google Scholar 

  85. Hatch M D, and Slack C R. 1970. Photosynthetic CO2- fixation Pathways. Ann. Rev. Plant Physiol. 21: 141 – 162.

    Article  CAS  Google Scholar 

  86. Raghavendra A S, and Das VSR. 1977. Purification and properties of phosphoenolpyruvate and ribulose diphosphate carboxylases from C4 and C3 plants. Z. Pflanzenphysiol. 82: 315 – 321.

    CAS  Google Scholar 

  87. Ting I P, and Osmond C B. 1973. Photosynthetic phosphoenolpyruvate carboxylases. Characteristics of alloenyzmes from leaves of C3 and C4 plants; Multiple forms of plant phosphoenolpyruvate carboxylase associated with different metabolic pathways. Plant Physiol. 51: 439-447; 448 – 453.

    Article  PubMed  CAS  Google Scholar 

  88. Stiborova M, and LeblovSi S. 1983. Isolation and partial characterization of two phosphoenolpyruvate carboxylases from maize (Zea mays L.). Photosynthetica 17: 379 – 385.

    CAS  Google Scholar 

  89. Nakamoto H, Ku M S B, and Edwards G E. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species II. Kinetic properties of phosphoenol-pyruvate carboxylase from C3, C4 and C3-C4 intermediate species. Plant Cell Physiol. 24: 1387 – 1393.

    CAS  Google Scholar 

  90. Hatch M D, Kagawa T, and Craig S. 1975. Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Aust. J. Plant Physiol. 2: 111 – 128.

    Article  CAS  Google Scholar 

  91. Ehleringer J, and Pearcy R W. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 73: 555 – 559.

    Article  PubMed  CAS  Google Scholar 

  92. Whitfeld P R, and Bottomley W. 1983. Organization and structure of chloroplast genes. Ann. Rev. Plant Phyisol. 34: 279 – 310.

    Article  CAS  Google Scholar 

  93. Palmer J D, Singh G P, and Pillay D T N. 1983. Structure and sequence evolution of three legume chloroplast DNAs. Mol. Gen. Genet. 190: 13 – 19.

    Article  CAS  Google Scholar 

  94. Erickson L R, Straus N A, Beversdorf W D. 1983. Restriction patterns reveal origins of chloroplast genomes in Brassica amphidipioids. Theor. Appl. Genet. 65: 201 – 206.

    Article  CAS  Google Scholar 

  95. Berthou F, Mathieu C, and Vedel F. 1983. Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genus Coffea L. Theor. Appl. Genet. 65: 77 – 84.

    Article  CAS  Google Scholar 

  96. Kemble R J, Gunn R E, and Flavell R B. 1983. Mitochondrial DNA variation in races of maize indigenous to Mexico. Theor. Appl. Genet. 65: 129 – 144.

    Article  CAS  Google Scholar 

  97. Shannon, J C. 1982. A search for rate-limiting enzymes that control crop production. Iowa State J. Res. 56: 307 – 322.

    CAS  Google Scholar 

  98. Wilson D. 1981. Breeding for morphological and physiological traits. In. Frey K J, ed, Plant Breeding II, Iowa State University Press, Ames, pp 233 – 308.

    Google Scholar 

  99. Ellison F, Derera N F, and Pederson D G. 1983. Inheritance of physiological characters associated with yield variation in bread wheat. Euphytica 32: 241 – 255.

    Article  Google Scholar 

  100. Ojima M. 1974. Improvement of photosynthetic capacity in soybean variety. Jap. Agric. Res. Quart. 8: 6 – 12.

    Google Scholar 

  101. Wallace D H, Peet M M, and Ozbun J L. 1976. Studies of CO2 metabolism in Phaseolus vulgaris L. and applications in breeding. In. Burris R H, and Black C C, eds, CO2 Metabolism and Plant Productivity, University Park Press, Baltimore, pp 43 – 58.

    Google Scholar 

  102. Mahon J D, and Hobbs SLA. 1981. Selection of peas for photosynthetic CO2 exchange rate under field conditions. Crop Sci. 21: 616 – 621.

    Article  CAS  Google Scholar 

  103. Harrison S A, Boerma H R, and Ashley D A. 1981. Heritability of canopy-apparent photosynthesis and its relationship to seed yield in soybeans. Crop Sci. 21: 222 – 226.

    Article  Google Scholar 

  104. Secor J, McCarty D R, Shibles R, and Green D E. 1982. Variability and selection for leaf photosynthesis in advanced generations of soybeans. Crop Sci. 22: 255 – 259.

    Article  Google Scholar 

  105. Moss D N, and Musgrave R B. 1971. Photosynthesis and crop production. Adv. Agron. 23: 317 – 336.

    Article  Google Scholar 

  106. Cannell R Q, Brun W A, and Moss D N. 1969. A search for high net photosynthetic rate among soybean genotypes. Crop Sci. 9: 840 – 841.

    Article  Google Scholar 

  107. Somervi11e C R, and Ogren W L. 1982. Genetic modification of photorespiration. Trends Biochem. Sci. 7:171- 174.

    Google Scholar 

  108. Zelitch I, and Day P R. 1973. The effect on net photosynthesis of pedigree selection for low and high rates of photorespirati on in tobacco. Plant Physiol. 52: 33 – 37.

    Article  PubMed  CAS  Google Scholar 

  109. Bjorkman O, Nobs M, Pearcy R, Boynton J, and Berry J. 1971. Charateristics of hybrids between C3 and C4 species of Atriplex. In. Hatch M D, Osmond C B, and Slatyer R O eds, Photosynthesis and Photorespiration. Wiley-Interscience, New York, pp 105 – 119.

    Google Scholar 

  110. Wilson D, and Cooper J P. 1970. Effect of selection for mesophyll cell size on growth and assimilation in Lolium perenne L. New Phytol. 69: 233 – 245.

    Article  Google Scholar 

  111. Gaskel M L, and Pearce R B. 1981. Growth analysis of maize hybrids differing in photosynthetic capability. Agron. J. 73: 817 – 821.

    Article  Google Scholar 

  112. Shaver D L. 1984. Genetics and breeding of maize with extra leaves above the ear. Proc. 38th Ann. Corn & Sorghum Ind. Res. Conf. 1983, American Seed Trade Association, Washington, DC, in press.

    Google Scholar 

  113. Ogren W L, and Chollet R. 1982. Photorespirati on. In. Govindjee, ed, Photosynthesis II. Development, Carbon Metabolism, and Plant Productivity, Academic Press, New York, pp 191 – 230.

    Google Scholar 

  114. Osmond C B. 1981. Photorespirati on and photoinhibition: Some implications for the energetics of photosynthesis. Biochim. Biophys. Acta 639: 77 – 98.

    CAS  Google Scholar 

  115. Gatenby A A, Castleton J A, and Saul M W. 1981. Expression in E. coli of maize and wheat chloroplast genes for large subunit of ribulose bisphosphate carboxylase. Nature 291: 117 – 121.

    CAS  Google Scholar 

  116. Kirk J T O, and Tilney-Bassett R A E. 1967. The Plastids: Their Chemistry, Structure, Growth and Inheritance, W H Freeman & Co, London.

    Google Scholar 

  117. Buetow D E. 1982. Molecular biology of chloroplasts. In. Govindjee, ed, Photosynthesis II. Development, Carbon Metabolism and Plant Productivity, Academic Press, New York, pp 43 – 88.

    Google Scholar 

  118. Strobel G A. 1980. Potentials for improving crop production. In. Rubenstein I, Gengenbach B, Phillips R L, and Green C E, eds, Genetic Improvement of Crops: Emergent Techniques, University Minnesota Press, Minneapolis, pp 3 – 23.

    Google Scholar 

  119. Evans D A. 1983. Somatic hybrids for crop improvement and gene research. Bio/Technology 1: 856 – 858.

    Article  Google Scholar 

  120. Sybenga J. 1983. Genetic manipulation in plant breeding: somatic versus generative. Theor. Appl. Genet. 66: 179 – 201.

    Article  CAS  Google Scholar 

  121. Galun E, and Aviv D. 1983. Cytoplasmic hybridization: Genetic and breeding applications. In. Evans D A, Sharp W R, Ammirato P V, and Yamada Y, eds, Handbook of Plant Cell Culture Vol 1, Techniques for Propagation and Breeding, Macmillan Publishing Co, New York, pp 358 – 392.

    Google Scholar 

  122. Berlyn M B, Zelitch I, Polacco J, and Day P R. 1978. Use of tissue culture for genetic modification of photo- synthetic biochemistry. In. Walden D B, ed, Maize Breeding and Genetics, John Wiley & Sons, New York, pp 559 – 578.

    Google Scholar 

  123. Chaleff R S. 1981. Genetics of Higher Plants: Applications of Cell Culture, Cambridge University Press, Cambridge.

    Google Scholar 

  124. Widholm J M. 1983. Plant tissue culture and agricul¬ture. In. Soybean Research in China and the United States, Proc. 1st China/USA Soybean Symposium & Working Group Meeting, Intsoy Series No. 25, pp 162 – 163.

    Google Scholar 

  125. Buttery B R, and Buzzell R I. Maximizing crop productivity. In. Gupta U S, ed, Problems in Crop Physiology, Oxford & IBH Publishing Co, New Delhi, pp 223–276, in press.

    Google Scholar 

  126. Ranty B, Courtiade B, Piquemal M, Cavalié G, and Rollier M. 1982. Photosynthesis in sunflower leaves: RuBP carboxylase properties, activities and quantitative determination. In. Proc. 10th Int. Sunflower Conf., Australian Sunflower Association, Toowoomba, Queensland.

    Google Scholar 

  127. Delaney M E, and Walker D A. 1978. Comparison of kinetic properties of ribulose bisphosphate carboxylase in chloroplast extracts of spinach, sunflower and four other reductive pentose phosphate-pathway species. Biochem. J. 171: 477 – 482.

    PubMed  CAS  Google Scholar 

  128. Flavell R B. 1982. Recognition and modification of crop plant genotypes using techniques of molecular biology. In. Vasil I K, Snowcroft W R, and Frey K J, eds, Plant Improvement and Somatic Cell Genetics, Academic Press, New York, pp 277 – 291.

    Google Scholar 

  129. Barton K A, and Brill W J. 1983. Prospects in plant genetic engineering. Science 219: 671 – 676.

    Article  PubMed  CAS  Google Scholar 

  130. Flavell RB, O’Dell M, and Jones J. 1980. Cereal genome studies and plant breeding research. In. Rubenstein I, Gengenbach B, Phillips R L, and Green C E, eds, Genetic Improvement of Crops: Emergent Techniques, University Minnesota Press, Minneapolis, pp 76 – 90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Buzzell, R.I., Buttery, B.R. (1984). Breeding for Improved CO2 Fixation. In: Collins, G.B., Petolino, J.G. (eds) Applications of Genetic Engineering to Crop Improvement. Advances in Agricultural Biotechnology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6207-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6207-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6209-5

  • Online ISBN: 978-94-009-6207-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics