Skip to main content

Analysis and Prognosis of Metal Mobility in Soils and Wastes

  • Chapter
Contaminated Soil ’88
  • 23 Accesses

Abstract

The most relevant mechanism of toxicity of heavy metals certainly is the chemical inactivation of enzymes. Some metals may also damage cells by acting as antimetabolites, or by forming precipitates or chelates with essential metabolites. Soil biochemical processes considered especially sensitive to heavy metals are mineralization of N and P, cellulose degradation and possibly N2-fixation1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domsch KH, Jagnow G, Anderson TH: An Ecological Concept for the Assessment of Side-Effects of Agrochemicals on Soil Microorganisms. Residue Review 86: 65–105 (1983)

    CAS  Google Scholar 

  2. Berrow ML: An Overview of Soil Contamination Problems. In: JN Lester et al. (Eds) Proc Int Conf Chemical in the Environment, pp 543–552. London: Selper Ltd 1986

    Google Scholar 

  3. Nriagu JO (Ed): Changing Metal Cycles and Human Health. Berlin: Dahlem Konferenzen, Springer-Verlag 1984

    Google Scholar 

  4. Förstner U: Metal Speciation in Solid Wastes — Factors Affecting Mobility. In: L Landner (Ed) Speciation of Metals in Water, Sediment and Soil Systems, pp 13–41. Berlin: Springer 1987

    Google Scholar 

  5. Jaworski JF et al.: Routes of Exposure to Humans and Bioavailability. In [2], pp 375–388 (1984)

    Google Scholar 

  6. Sauerbeck D: Funktionen, Güte und Belastbarkeit des Bodens aus agrikulturchemische Sicht. Stuttgart: Kohlhammer 1985

    Google Scholar 

  7. Pickering WF: Selective Chemical Extraction of Soil Components and Bound Metal Species. Crit Rev Anal Chem 12: 233–266 (1981)

    Article  CAS  Google Scholar 

  8. Luoma SN: Bioavailability of Trace Metals to Aquatic Organisms: A Review. Sol Total Environ 28: 1–22 (1983)

    Article  CAS  Google Scholar 

  9. Herms U, Brümmer G: Einfluß der Bodenreaktion auf Löslichkeit und tolerierbare Gesamtgehalte an Nickel, Kupfer, Zink, Cadmium und Blei in Böden und kompostierbaren Siedlungsabfällen. Landwirtschaftliche Forschung 33: 408–423 (1980)

    Google Scholar 

  10. Hara T, Sonoda J: Comparison of the Toxicity of Heavy Metals to Cabbage Growth. Plant and Soil 50: 127–133 (1979).

    Article  Google Scholar 

  11. Darby DA, Adams DD, Nivens WT: Early Sediment Changes and Element Mobilization in a Man-Made Estuarine Marsh. In: PG Sly (Ed) Sediments and Water Interactions, pp 343–351. New York: Springer 1986

    Chapter  Google Scholar 

  12. Förstner Ü, Kersten M: Assessment of Metal Mobility in Dredged Material and Mine Waste by Pore Water Chemistry and Solid Speciation. In W Salomons, U Förstner (Eds) Biology and Chemistry of Solid Waste: Dredged Material and Mine Tailings. Berlin: Springer 1988

    Google Scholar 

  13. Theis TL, Padgett LE: Factors affecting the release of trace metals from municipal sludge ashes. J Water Pollut Control Fed 55, 1271–1279 (1983)

    CAS  Google Scholar 

  14. Sauerbeck D, Styperek P: Evaluation of Chemical Methods for Assessing the Cd and Zn Availability from Different Soils and Sources. In R Leschber et al (Eds) Chemical Methods for Assessing Bio-Available Metals in Sludges and Soils, pp 49–66. London: Elsevier Applied Science Publ 1985

    Google Scholar 

  15. Harris WR, Silberman D: Time-Dependent Leaching of Coal Fly Ash by Chelating Agents. Environ Sci Technol 15:139–145 (1983)

    Article  Google Scholar 

  16. Ham RK, Anderson MA, Stanforth R, Stegmann R: Background Study on the Development of a Standard Leaching Test. EPA-600/2–79–109. Cincinnati: US Environmental Protection Agency 1979

    Google Scholar 

  17. Van der Sloot HA, Piepers O, Kok A: A Standard Leaching Test for Combustion Residues. Studiegroep Ontwikkeling Standaard Uitloogtesten Verbrandingsresiduen (SOSUV). BE0P-31. June 1984

    Google Scholar 

  18. Lindberg SE, Harriss RC: The Role of Atmospheric Deposition in an Eastern US Deciduous Forest. Water Air Soil Poll 16: 13–31 (1981)

    Article  CAS  Google Scholar 

  19. Kiekens L, Cottenie, A: Principles of Investigations on the Mobility and Plant Uptake of Heavy Metals. In R Leschber et al (Eds) Chemical Methods for Assessing Bio-Available Metals in Sludges and Soils, pp 32–47. London: Elsevier Applied Science Publ 1985

    Google Scholar 

  20. Förstner U: Chemical Forms and Reactivities of Metals in Sediments. Ibid [19] pp 1–30.

    Google Scholar 

  21. Tessier A, Campbell PGC, Bisson M: Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal Chem 51: 844–851 (1979)

    Article  CAS  Google Scholar 

  22. Förstner U: Changes in Metal Mobilities in Aquatic and Terrestrial Cycles. In JW Patterson, R Passino (Eds) Speciation, Separation and Recovery of Metals, pp 3–26. Chelsea/Ml: Lewis Publ 1987

    Google Scholar 

  23. Rudd T, Campbell JA, Lester, JN: Characterization of Metal Forms in Sewage Slduges by Chemical Extraction. In JN Lester, R Perry, RM Sterritt (Eds) Chemicals in the Environment, pp 756–771. London: Selper Ltd 1986

    Google Scholar 

  24. Harrison RM, Laxen DPH, Wilson SJ: Chemical Associations of Lead, Cadmium, Copper, and Zinc in Street Dusts and Roadside Soils. Environ Sci Technol 15: 1378–1383 (1981)

    Article  CAS  Google Scholar 

  25. Patrick WH, Williams BG, Moraghan, JT: A Simple System for Controlling Redox Potential and pH in Soil Suspensions. Soil Sei Soc Amer Proc 37: 331–332 (1973)

    Article  CAS  Google Scholar 

  26. Herms U, Brummer G: Löslichkeit von Schwermetallen in Siedlungsabfällen und Böden in Abhängigkeit von pH-Wert, Redox-bedingungen und Stoffbestand. Mitt Deutsche Bodenkundl Ges 27: 23–34(1978)

    Google Scholar 

  27. Schoer J, Förstner U: Abschätzung der Langzeitbelastung von Grundwasser durch die Ablagerung metallhaltiger Feststoffe. Z Vom Wasser 69 (1987) (see also Poster Description “Long-Term Behaviour of Heavy Metals in Sludges” in this Publication)

    Google Scholar 

  28. Fuller WH, Warrick, AW: Soils in Waste Treatment and Utilization. Vol. II, Chapter 5, Models for Predicting Pollutant Movement through Soil. Boca Raton/Fla.: CRC Press 1985

    Google Scholar 

  29. TU Harburg in the Framework of a Coordinated Research Program (“Schwerpunktprogramm”) by German Research Council (Deutsche Forschungsgemeinschaft) “Pollutants in Groundwater”

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Förstner, U. (1988). Analysis and Prognosis of Metal Mobility in Soils and Wastes. In: Wolf, K., Van Den Brink, W.J., Colon, F.J. (eds) Contaminated Soil ’88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2807-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2807-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7763-7

  • Online ISBN: 978-94-009-2807-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics