Skip to main content

Abstract

In polluted soils, biological processes are severely impaired due to the presence of two types of xenobiotics:1 namely toxic inorganic compounds such as heavy metals, and toxic organic pollutants such as man-made chemicals. The presence of such substances in the environment provides new selection pressures for microorganisms and has led to the development of bacteria with new degradative capacities and resistance mechanisms. On the other hand, the presence of these toxic compounds has an important impact on the resident microflora which seems to be much less varied in polluted areas than in non-polluted sites.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutzinger O, Veerkamp W. Xenobiotics with pollution potential. In: Leisinger T, Coox AM, Hütter R, Nüesch J, eds. Microbial degradation of xenobiotics and recalcitrant compounds. New York: Academic Press, 1981: 3–45.

    Google Scholar 

  2. Doelman P. Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjøller A, Søresen LH, eds. Microbial communities in soil. London and New York: Elsevier, 1987; 369–383

    Google Scholar 

  3. Smith K, Novick RP. Genetic studies on plasmid-linked Cd resistance in S. aureus. J Bacteriol 1987; 112: 761–772.

    Google Scholar 

  4. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 1985; 162: 320–324.

    Google Scholar 

  5. Diels L, Sadouk A, Mergeay M. Large plasmids governing multiple resistances to heavy metals: a genetic approach. Toxicol Environ Chem 1989; 23: 79–89.

    Article  CAS  Google Scholar 

  6. Jobling MG, Ritchie DA. Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet 1987; 208: 288–293.

    Article  PubMed  CAS  Google Scholar 

  7. Walter EG, Taylor DE. Comparison of tellurite resistance determinants from the IncP plasmid RP4Ter and the Inc II plasmid pHH1508a. J Bacteriol 1989; 171: 2160–2165.

    PubMed  CAS  Google Scholar 

  8. McHugh GC, Moellering RC, Hopkins CC, Swartz MN. Salmonella typhimurium resistant to silver nitrate, chloramphenicol and ampicillin. Lancet 1975; i: 235.

    Google Scholar 

  9. Hedges RW, Baumberg S. Resistance to arsenic compounds conferred by a plasmid transmissible between strains of E. coli. J Bacteriol 1973; 115: 450–460.

    Google Scholar 

  10. Bale MJ, Fry JC, Day MJ. Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl Environ Microbiol 1988; 54: 972–978.

    PubMed  CAS  Google Scholar 

  11. Ohtake H. Cervantes C, Silver S. Decreased Chromate uptake in Pseudomonas fluorescens carrying a Chromate resistance plasmid. J Bacteriol 1987; 169: 3853–3856.

    Google Scholar 

  12. Sensfuss C, Reh M, Schlegel HG. No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J Gen Microbiol 1986; 132: 997–1007.

    PubMed  CAS  Google Scholar 

  13. Dabbs ER, Sole GJ. Plasmid-borne resistance to arsenate, arsenite, cadmium, and chloramphenicol in a Rhodococcus species. Mol Gen Genet 1988; 211: 148–154.

    Article  PubMed  CAS  Google Scholar 

  14. Desomer J. Dhaese P. Van Montagu M. Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J Bacteriol 1988; 170: 2401–2405.

    PubMed  CAS  Google Scholar 

  15. Stall RE, Loschke DC, Jones JB. Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 1986; 76: 240–243.

    Article  CAS  Google Scholar 

  16. Ishihara M. Kamio Y, Terawaki Y. Cupric ion resistance as a new genetic marker of a temperature sensitive R plasmid, Rtsl in Escherichia coli. Biochem Biophys Res Commun 1978; 82: 74–80.

    Article  PubMed  CAS  Google Scholar 

  17. Tetaz TT, Luke RKJ. Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 1983; 154: 1263–1268.

    PubMed  CAS  Google Scholar 

  18. Bender CL, Cooksey DA. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 1986; 165: 534–541.

    PubMed  CAS  Google Scholar 

  19. Rheinwald JG, Chakrabarty AM, Gunsalus IC. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA 1973; 70: 885–889.

    Article  PubMed  CAS  Google Scholar 

  20. Chakrabarty AM, Chou G and Gunsalus IC. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA 1973; 70: 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  21. Chakrabarty AM. Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 1972; 112: 815–823.

    PubMed  CAS  Google Scholar 

  22. Yen K-M, Gunsalus IC. Plasmid gene organization: Naphthalene/salicylate oxidation. Proc Natl Acad Sci USA 1982; 79: 874–878.

    Article  PubMed  CAS  Google Scholar 

  23. Worsey MJ, Williams A. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J Bacteriol 1975; 124: 7–13.

    PubMed  CAS  Google Scholar 

  24. Winstanley, C, Taylor SC, Williams FA. pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the beta-ketoadipate pathway. Mol Microbiol 1987; 1: 119–217.

    Article  Google Scholar 

  25. Thacker R, Gunsalus IC. Dissociation of the NIC plasmid aggregate in Pseudomonas putida. J Bacteriol 1979; 137: 697–699.

    PubMed  CAS  Google Scholar 

  26. Hopper DJ, Kemp PD. Regulation of enzymes of the 3, 5-xylenol degradative pathway in Pseudomonas putida: evidence for a plasmid. J Bacteriol 1980; 142: 21–26.

    PubMed  CAS  Google Scholar 

  27. Anson JG, Mackinnon G. Novel Pseudomonas plasmid involved in aniline degradation. Appl Environ Microbiol 1984; 48: 868–869.

    PubMed  CAS  Google Scholar 

  28. Andreoni V, Bestetti G. Comparative analysis of different Pseudomonas strains that degrade cinnamic acid. Appl Environ Microbiol 1986; 52: 930–934.

    PubMed  CAS  Google Scholar 

  29. Shingler V, Franklin FCH, Tsuda M. Holroyd D, Bagdasarian M. Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol 1989; 135: 1083–1092.

    PubMed  CAS  Google Scholar 

  30. Shields MS, Hooper SW, Sayler GS. Plasmid-mediated mineralization of 4-chlorobiphenyl. J Bacteriol 1985; 163: 882–889.

    PubMed  CAS  Google Scholar 

  31. Furukawa K, Chakrabarty AM. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol 1982; 44: 619–626.

    PubMed  CAS  Google Scholar 

  32. Chatterjee DK, Chakrabarty DM. Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J Bacteriol 1983; 153: 532–534.

    PubMed  CAS  Google Scholar 

  33. Dorn E, Hellwig M. Reineke W, Knackmuss H-J. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 1974; 99: 61–70.

    Article  PubMed  Google Scholar 

  34. Wyndham RC, Singh RK, Strauss NA. Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol 1988; 150: 237–243.

    Article  PubMed  CAS  Google Scholar 

  35. Don RH, Pemberton JM. Properties of six pesticide degrading plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 1981; 145: 681–686.

    PubMed  CAS  Google Scholar 

  36. Hardman DJ, Gowland PC, Slater JH. Large plasmids from soil bacteria enriched on halogenated alkanoic acid. Appl Environ Microbiol 1986; 51: 44–51.

    PubMed  CAS  Google Scholar 

  37. Serder CM, Gibson DT, Munnecke DM, Lancaster JH. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 1982; 44: 246–249.

    Google Scholar 

  38. Tam AC, Behki RM, Khan SU. Isolation and characterization of an s-ethyl-N, N-dipropylthiocarbamate-degrading Arthrobacter strain and evidence for plasmid-associated s-ethyl-N, N-dipropylthiocarbamate degradation. Appl Environ Microbiol 1987; 53: 1088–1093.

    PubMed  CAS  Google Scholar 

  39. Monticello DJ, Bakker D, Finnerty WR. Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 1985; 49: 756–760.

    PubMed  CAS  Google Scholar 

  40. Chaudry GR, Haung GH. Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2, 4-dichlorophenoxyacetate. J Bacteriol 1988; 170: 3897–3902.

    Google Scholar 

  41. Bestetti G, Galli E, Ruzzi M. Baldacci G, Zennato E, Frontali L. Molecular characterization of a plasmid from Pseudomonas fluorescens involved in styrene degradation. Plasmid 1984; 12: 181–188.

    Article  PubMed  CAS  Google Scholar 

  42. Eaton RW, Timmis KN. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol 1986; 168: 123–131.

    PubMed  CAS  Google Scholar 

  43. Silver S, Misra TK. Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 1988; 42: 717–743.

    Article  PubMed  CAS  Google Scholar 

  44. Inzé D, Follin A, Van Lijsebettens M, Simoens C, Gentello C, Van Montagu M, Schell J. Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens: further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 1984; 194: 265–274.

    Article  Google Scholar 

  45. Kortlüke C, Hogrefe C, Eberz G, Pühler A, Friedrich B. Genes of lithoautothrophic metabolism are clustered on the megaplasmid pHG1 in Alcaligenes eutrophus. Molec Gen Genet 1987; 210: 122–128.

    Article  Google Scholar 

  46. Shapiro JA. Appendix B: Bacterial plasmids. In: Bukhari AI, Shapiro JA, Adhya SL, eds. DNA insertion elements, plasmids and episomes. Cold Spring Harbor Laboratory, 1977: 601–704.

    Google Scholar 

  47. Woese CR. Bacterial evolution. Microbiol Rev 1987; 51: 221–271.

    PubMed  CAS  Google Scholar 

  48. Stackebrandt E, Murray RGE, Truper HG. Proteobacteria, classis nov., a name for the phylogenetic taxon including the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 1988; 38: 321–325.

    Article  Google Scholar 

  49. Furuichi T, Inouye M, Inouye S. Novel one-step cloning vector with a transposable element: application to the Myxococcus xanthus genome. J Bacteriol 1985; 164: 170–175.

    Google Scholar 

  50. Glomp I., Saulnier P, Guespin-Michel J, Schairer U. Transfer for IncP plasmids into Stigmatella aurantiaca leading to insertional mutants affected in spore development. Mol Gen Genet 1988; 214: 213–217.

    Article  PubMed  CAS  Google Scholar 

  51. Powell B, Mergeay M, Christofi N. Transfer of broad host-range plasmids to sulphate-reducing bacteria. FEMS Microbiol Lett 1989, 59: 269–274.

    Article  CAS  Google Scholar 

  52. Guiney DG, Hasegawa P, Davies CE. Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes. Proc Nat Acad Sci USA 1984; 81: 7203–7206.

    Article  PubMed  CAS  Google Scholar 

  53. Kreps S, Ferino F, Mosrin C, Gerits J, Mergeay M, Thuriaux P. Conjugative transfer and autonomous replication of a promiscuous IncQ plasmid in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet (in press).

    Google Scholar 

  54. Buchanan-Wollaston V, Passiatore JE, Cannon F. The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 1987; 328: 172–175.

    Article  CAS  Google Scholar 

  55. Heinemann JA, Sprague GF. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 1989; 340: 205–209.

    Article  PubMed  CAS  Google Scholar 

  56. Dorrington RA, Rawlings DE. Identification and sequence of the basic replication region of a broad-host-range plasmid isolated from Thiobacillus ferrooxidans. J Bacteriol 1989; 171: 2735–2739.

    PubMed  CAS  Google Scholar 

  57. Clewell DB. Plasmids, drug resistance and gene transfer in the genus Streptococcus. Microbiol Rev 1981; 45: 404–436.

    Google Scholar 

  58. Goze A, Ehrlich SD. Replication of plasmids from Staphylococcus aureus in Escherichia coli. Proc Natl Acad Sci USA 1980; 77: 7333–7337.

    Article  PubMed  CAS  Google Scholar 

  59. Trieu-Cuot P, Gerbaud G, Lambert T, Courvalin P. In vivo transfer of genetic information between gram-positive and gram-negative bacteria. EMBO J 1985; 4: 3583–3587.

    PubMed  CAS  Google Scholar 

  60. Van Gijsegem F, Toussaint A. Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimuriumy Klebsiella pneumoniae and Proteus mirabilis. Plasmid 1982; 7: 30–44.

    Article  PubMed  Google Scholar 

  61. Schoonejans E, Toussaint A. Utilization of plasmid pULB113 (RP4::mini-Mu) to construct a linkage map of Erwinia carotovora subsp. chrysanthemi. J Bacteriol 1983; 154: 1489–1492.

    PubMed  CAS  Google Scholar 

  62. Mergeay M, Lejeune P, Sadouk A, Gerits J, Fabry L. Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113. Molec Gen Genet 1988; 209: 61–70.

    Article  Google Scholar 

  63. Thiry G, Mergeay M and Faelen M. Back-mobilisation of Tra- Mob+ plasmids mediated by various IncM, IncN and IncPI plasmids. Arch Intern Physiol Biochem 1984; 92: 64–65.

    Google Scholar 

  64. Thiry G. Analyse moléculaire et fonctionnelle des plasmides d’une bactérie épiphyte: Erwinia uredovora. PhD thesis, Université de Liège, 1984.

    Google Scholar 

  65. Lanka E, Lurz R, Kröger M, Fürste JP. Plasmid RP4 encodes two forms of a DNA primase. Mol Gen Genet 1984; 194: 65–72.

    Article  PubMed  CAS  Google Scholar 

  66. Smith CA, Thomas CM. Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncPβ sub-group are closely related. Mol Gen Genet 1987; 206: 413–427.

    Google Scholar 

  67. Perkins EJ, Lurquin PF. Duplication of a 2, 4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 1988; 170: 5669–5672.

    PubMed  CAS  Google Scholar 

  68. Hazen TC, Jiminez L. Enumeration and identification of bacteria from environmental samples using nucleic acid probes. Microbiol Sci 1988; 5: 340–343.

    PubMed  CAS  Google Scholar 

  69. Barkay T, Pritchard M. Adaptation of aquatic microbial communities to pollutant stress. Microbiol Sci 1988; 5: 165–169.

    PubMed  CAS  Google Scholar 

  70. Barkay T, Liebert C, Gillman M. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl Environ Microbiol 1989; 55: 1574–1577.

    PubMed  CAS  Google Scholar 

  71. Nies D, Mergeay M, Friedrich B, Schlegel HG. Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 1987; 171: 896–900.

    Google Scholar 

  72. Sadouk A. Etude du génome d’une bactérie du sol résistance aux métaux lourds: Alcaligenes eutrophus CH34. PhD thesis, Université de Liège, 1989.

    Google Scholar 

  73. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1983; 1: 784–791.

    Article  CAS  Google Scholar 

  74. Fulthorpe R, Wyndham RC. Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system. Appi Environ Microbiol 1989; 55: 1584–1590.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Mergeay, M., Springael, D., Top, E. (1990). Gene transfer in polluted soils. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics