Skip to main content

Nitrogen assimilation by legumes — processes and ecological limitations

  • Chapter
Nitrogen Economy in Tropical Soils

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 69))

  • 428 Accesses

Abstract

Legumes may feed on three different sources of nitrogen: nitrate, ammonium, and, due to symbiotic N2 fixation, atmospheric dinitrogen. In all three cases ammonium is finally assimilated by the glutamine synthetase (GS)/glutamate synthase (GOGAT) system. NH +4 produced by nitrogenase in symbiosomes of legume nodules is released into the host cell cytosol where it is incorporated into amino acids and amides. The release of NH +4 into the cytosol appears to occur purely by diffusion. Therefore, the activity of the GS/GOGAT enzymes is decicive to avoid product inhibition of nitrogenase by NH +4 . No information is available on the mechanism of xylem loading with amides or ureides, a process that may play a key role in avoiding accumulation of amino acids in infected nodule cells. The same applies to phloem unloading of sucrose. Both transport processes, however, may determine the efficiency of N2 fixation by legumes.

There is no convincing evidence that N2 fixation by legumes is generally limited by energy supply to nodules. On the other hand, N2 fixation is often restricted by environmental constraints. Environmental stresses may limit N2 fixation of legumes at four different levels: Rhizobium (Bradyrhizobium) multiplication in soil, rhizobial infection of roots, nodulation, and N2 fixation. There is increasing evidence that, sufficient infection by effective rhizobial strains provided, N demand of the host plant determines the potential of N2 fixation. Various environmental stresses and supply of mineral N reduce nodulation and nitrogenase activity without affecting total N concentration of the plant tissue. Stress-induced reduction of plant growth, however, results in an accumulation of free amino acids, amides, or ureides in shoots, roots, and nodules which may be responsible for the regulation of nodulation and nitrogenase activity via a feedback system. This implies that enhancement of N2 fixation by legumes can be realized in two different ways: either by improvement of stress resistance and dry matter accumulation or by uncoupling of the feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams F (1981) Nutritional imbalances and constraints to plant growth on acid soils. J Plant Nutr 4: 81–87

    Article  CAS  Google Scholar 

  2. Allan S and Raven JA (1987) Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source: The role of long distance transport. J Exp Bot 38: 580–596

    Article  Google Scholar 

  3. Andrew CS (1976) Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. Aust J Agric Res 27: 61–623

    Google Scholar 

  4. Arneke WW (1980) Der Einfluss des Kaliums auf die Komponenten des Wasserpotentials und auf die Wachstumsrate von Phaseolus vulgaris L. Ph. D. thesis, Justus Liebig University Giessen, Germany

    Google Scholar 

  5. Barraclough PB (1986) The growth and activity of winter roots in the field: nutrient uptakes of high-yielding crops. J Agric Sci Camb 106: 45–52

    Article  Google Scholar 

  6. Bashan Y and Levanony H (1989) Effect of root environment on proton efflux in wheat roots. Plant Soil 119: 191–197

    Article  CAS  Google Scholar 

  7. Bauer WD (1981) Infection of legumes by rhizobia. Ann Rev Plant Physiol 32: 407–449

    Article  CAS  Google Scholar 

  8. Beck T (1983) Die N-Mineralisierung von Böden im Labor-brutversuch. Z Pflanzenernähr Bodenkd 146: 243–252

    Article  CAS  Google Scholar 

  9. Berti A, Felle H and Bentrup FW (1984) Amine transport in Riccia fluitans. Cytoplasmic and vacuolar pH recorded by a pH-sensitive microelectrode. Plant Physiol 76: 75–78

    Article  Google Scholar 

  10. Bliss FA (1993) Breeding common bean for improved biological nitrogen fixation. Plant Soil 152: 71–79

    Article  Google Scholar 

  11. Bliss FA (1993) Utilizing the potential for increased nitrogen fixation in common bean. Plant Soil 152: 157–160

    Article  Google Scholar 

  12. Caba JM, Lluch C and Ligero F (1993) Genotypic differences in nitrogen assimilation in Vicia faba: Effect of nitrate. Plant Soil 151: 167–174

    Article  Google Scholar 

  13. Chen CL and Sung JM (1983) The effect of water stress on enzymes of carbon metabolism in cytosol of soybean nodules. J Agric Ass China 121: 28–34

    CAS  Google Scholar 

  14. Chloupek O, Babinec J and Malá M (1992) Breeding of lucerne for higher symbiotic nitrogen fixation and testing in hydroponics with limited mineral nitrogen. Bodenkultur 43: 109–113

    Google Scholar 

  15. Danso SKA, Hardarson G and Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152: 25–52

    Article  Google Scholar 

  16. Da Silva PM, Tsai SM and Bonetti R (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plaint Soil 152: 123–130

    Article  Google Scholar 

  17. Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27:513–529

    CAS  Google Scholar 

  18. Durand JL, Sheehy JE and Minchin FR (1987) Nitrogenase activity, photosynthesis and nodule water potential in soyabean plants experiencing water deprivation. J Exp Bot 38: 311–321

    Article  CAS  Google Scholar 

  19. Elkan GH (1992) Taxonomy of the rhizobia. Can J Microbiol 38: 446–450

    Article  Google Scholar 

  20. Fageria NK, Maligar VC and Wright RJ (1989) Growth and nutrient concentrations of alfalfa and common bean as influenced by soil acidity. Plant Soil 119: 331–333

    Article  CAS  Google Scholar 

  21. Feigenbaum S and Mengel K (1979) The effect of reduced light intensity and suboptimal potassium supply on N2 fixation and N turnover in Rhizobium infected lucerne. Physiol Plant 45: 245–249

    Article  CAS  Google Scholar 

  22. Felle H (1989) pH as a second messenger in plants. In: Second Messengers in Plant Growth and Development, pp 145–166. Alan Liss Inc. New York

    Google Scholar 

  23. Gerendás J, Ratcliffe RG and Sattelmacher B (1990) 31P nuclear magnetic resonance evidence for differences in intracellular pH in the roots of maize seedlings grown with nitrate or ammonium. J Plant Physiol 13: 125–128

    Google Scholar 

  24. Giaquinta RT, Lin W, Sadler NL and Franceschi VR (1983) Pathway of phloem unloading of sucrose in corn roots. Plant Physiol 72: 362–367

    Article  CAS  Google Scholar 

  25. Giller KE and KJ Wilson (1991) Nitrogen Fixation in Tropical Cropping Systems. CAB International, Oxon, UK

    Google Scholar 

  26. Guerin V, Trinchant JC and Rigaud J (1990) Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) nodules and bacteroids under water-restricted conditions. Plant Physiol 92: 595–601

    Article  CAS  Google Scholar 

  27. Hansen AP, Yoneyama T, Kouchi H and Martin P (1993) Respiration and nitrogen fixation of hydroponically cultured Phaseolus vulgaris L. cv. OAC Rico and a supernodulating mutant. I. Growth, mineral composition and effect of sink removal. Planta 189: 538–545

    Article  CAS  Google Scholar 

  28. Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152: 1–17

    Article  Google Scholar 

  29. Haynes RJ (1983) Soil acidification induced by leguminous crops. Grass For Sci 38: 1–11

    Article  CAS  Google Scholar 

  30. Heber U and Heldt HW (1981) The chloroplast envelope: Structure, function, and role in leaf metabolism. Ann Rev Plant Physiol 32: 139–168

    Article  CAS  Google Scholar 

  31. Hodges TK (1973) Ion absorption by plant roots. Agronomy 25: 163–207

    Article  CAS  Google Scholar 

  32. Hunt S and Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Ann Rev Plant Physiol Plant Mol Biol 44: 483–511

    Article  CAS  Google Scholar 

  33. Lannetta PPM, De Lorenzo C, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, De Felipe MR and Minchin FR (1993) Oxygen diffusion in lupin nodules. Visualization of diffusion barrier operation. J Exp Bot 44: 1461–1467

    Article  Google Scholar 

  34. Islam AKMS, Edwards DG and Asher CJ (1980) pH optima for crop growth. Results of a flowing solution culture experiment with six species. Plant Soil 54: 339–357

    Article  Google Scholar 

  35. Israel DW and WA Jackson (1978) The influence of nitrogen nutrition on ion uptake and translocation by leguminous plants. In: Andrew CS and Kamprath EJ (eds) Mineral Nutrition of Legumes in Tropical and Subtropical Soils, pp 113–128. CSIRO, Australia

    Google Scholar 

  36. Kleiner D (1981) The transport of NH3 and NH+ 4 across biological membranes. Biochim Biophys Acta 639: 41–52

    CAS  Google Scholar 

  37. LaRue TA and Patterson TG (1981) How much nitrogen do legumes fix? Adv Agron 4: 15–38

    Article  Google Scholar 

  38. Lawrie AC and Wheeler CT (1975) Nitrogen fixation in the root nodules of Vicia faba L. in relation to the assimilation of carbon. New Phytol 74: 429–436

    Article  CAS  Google Scholar 

  39. Mahler RL and McDole RE (1987) Effect of soil pH on crop yield in northern Idaho. Agron J 79: 751–755

    Article  Google Scholar 

  40. Marschner H and Römheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenphysiol 111: 241–251

    Google Scholar 

  41. Martin P (1990) Einfluß von Mineralstoffen auf das sym-biontische N2-Bindungssystem bei Leguminosen. Kali-Briefe (Büntehof) 20: 93–110

    Google Scholar 

  42. Mengel K (1977) Factors of nutrient availability and their relevance for crop production. In: Proc. of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture, pp 788–796. Tokyo, Japan

    Google Scholar 

  43. Mengel K (1991) Available nitrogen in soils and its determination by the “Nmin-method” and by electroultrafiltration (EUF). Fert Res 28: 251–262

    Article  Google Scholar 

  44. Mengel K (1994) Impact of the nutrient status of the host plant on symbiotic dinitrogen fixation. Z Pflanzenernähr Bodenkd 157: 233–241

    Article  CAS  Google Scholar 

  45. Mengel K and Schubert S (1985) Active extrusion of protons into deionized water by roots of intact maize plants. Plant Physiol 79: 344–348

    Article  CAS  Google Scholar 

  46. Mengel K and Steffens D (1982) Beziehung zwischen Kationen/Anionen-Aufnahme von Rotklee und Protonenab-scheidung der Wurzeln. Z. Pflanzenernähr Bodenkd 145: 229–236

    Article  CAS  Google Scholar 

  47. Merbach W and Schilling G (1980) Wirksamkeit der symbiontischen N2- Fixierung der Körnerleguminosen in Abhängigkeit von Rhizobienimpfung, Substrat, N-Düngung und 14C-Saccharoselieferung. Zentralbl Bakteriol II Abt 135: 99–118

    CAS  Google Scholar 

  48. Minchin FR, Sheehy JE and Minguez MI (1984) Acetylene-induced changes in the oxygen diffusion resistance and nitrogenase activity of legume root nodules. Ann Bot 5: 13–20

    Google Scholar 

  49. Moorby H, Nye PH and White RE (1985) The influence of nitrate nutrition on H+ efflux by young rape plants. Plant Soil 84: 403–415

    Article  CAS  Google Scholar 

  50. Mühling KH, Schubert S and Mengel K (1993) Role of plas-malemma H+ ATPase in sugar retention by roots of intact maize and field bean plants. Z Pflanzenernähr Bodenkd 156: 155–161

    Article  Google Scholar 

  51. Munns DN (1986) Acid soil tolerance in legumes and rhizobia. Adv Plant Nutr 2: 63–91

    CAS  Google Scholar 

  52. Munns DN, Hohenberg JS, Righetti TL and Lauter DJ (1981) Soil acidity tolerance of symbiotic and nitrogen-fertilized soybeans. Agron 73: 407–410

    Article  CAS  Google Scholar 

  53. Parsons R, Stanforth A, Raven JA and Sprent JJ (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16: 125–136

    Article  CAS  Google Scholar 

  54. Peña-Cabriales JJ and Castellanos JZ (1993) Effects of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant Soil 152: 151–155

    Article  Google Scholar 

  55. Peña-Cabriales JJ, Grageda-Cabrera OA and Kola V (1993) Time course of N2 fixation in common bean (Phaseolus vulgaris L.). Plant Soil 152: 115–121

    Article  Google Scholar 

  56. Peoples MB and Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. Adv Agron 44: 155–223

    Article  CAS  Google Scholar 

  57. Plies-Balzer E (1992) Ertagsleistung, N2-Fixierung und osmotische Anpassung an Wasserstress bei Vicia faba. Ph. D. thesis Justus Liebig University Giessen, Germany

    Google Scholar 

  58. Plies-Balzer E, Kong T, Schubert S and Mengel K (1994) Effect of water stress on plant growth, nitrogenase activity and nitrogen economy of four different cultivars of Vicia faba L. Eur J Agron (In press)

    Google Scholar 

  59. Raven JA and Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    Article  CAS  Google Scholar 

  60. Santos PJA, Edwards DG Asher CJ and Dart PJ (1993) Responses of Bradyrhizobium-inoculated mungbean (Vigna radiata) to applied nitrogen. In: Barrow NJ (ed) Plant Nutrition — From Genetic Engineering to Field Practice, pp 443–446. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  61. Schaller G and Fischer WR (1985) pH-Änderungen in der Rhizosphäre von Mais- und Erdnußwurzeln. Z Pflanzenernähr Bodenkd 148: 306–320

    Article  Google Scholar 

  62. Scherer HW and Danzeisen L (1980) Der Einfluß gesteigerter Stickstoffgaben auf die Entwicklung der Wurzelknöllchen, auf die symbiontische Stickstoffassimilation sowie auf das Wachstum und den Ertrag von Ackerbohnen (Vicia faba L.). Z. Pflanzenernähr Bodenkd 143: 464–470

    Article  CAS  Google Scholar 

  63. Schubert E, Mengel K and Schubert S (1990) Soil pH and calcium effect on nitrogen fixation and growth of broad bean. Agron J 82: 969–972

    Article  CAS  Google Scholar 

  64. Schubert KR, (1986) Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Ann Rev Plant Physiol 37: 539–574

    Article  CAS  Google Scholar 

  65. Schubert S, Schubert E and Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124: 239–244 (1990)

    Article  CAS  Google Scholar 

  66. Serraj R, Drevon JJ, Obaton M and Vidal A (1992) Variation in nitrate tolerance of nitrogen fixation in soybean (Glycine max) — Bradyrhizobium symbiosis. J Plant Physiol 140: 366–371

    CAS  Google Scholar 

  67. Serrano R (1989) Structure and function of plasma membrane ATPase. Ann Rev Plant Physiol Plant Mol Biol 40: 61–94

    Article  CAS  Google Scholar 

  68. Sheehy JE, Minchin FR and Witty JF (1983) Biological control of the resistance to oxygen flux in nodules. Ann. Bot 52: 565–571

    Google Scholar 

  69. Shibles R, Anderson IC and Gibson AH (1975) Soybean In: Evans LT (ed) Crop Physiology, pp 151–189. Cambridge University Press, Cambridge, UK

    Google Scholar 

  70. Smith DL and Krikorian AD (1992) Low external pH prevents cell elongation but not multiplication of embryonic carrot cells. Physiol Plant 84: 495–501

    Article  CAS  Google Scholar 

  71. Sprent JI and Sprent P (1990) Nitrogen Fixing Organisms. Pure and Applied Aspects. Chapman and Hall, London, UK

    Google Scholar 

  72. Streeter JG (1985) Nitrate inhibition of legume nodule growth and activity. I Long term studies with a continuous supply of nitrate. Plant Physiol 77: 321–324

    Article  CAS  Google Scholar 

  73. Streeter JG (1989) Estimation of ammonium concentration in the cytosol of soybean nodules. Plant Physiol 90: 779–782

    Article  CAS  Google Scholar 

  74. Streeter JG (1992) Analysis of apoplastic solutes in the cortex of soybean nodules. Physiol Plant 84: 584–592

    Article  CAS  Google Scholar 

  75. Streeter JG (1993) Translocation — A key factor limiting the efficiency of nitrogen fixation in legume nodules. Physiol Plant 87: 616–623

    Article  CAS  Google Scholar 

  76. Sung JM and Chen CL (1983) The effect of water stress on enzymes of ammonia assimilation in cytosol of soybean nodules. J Agric Ass China 121: 20–27

    CAS  Google Scholar 

  77. Sussman MR and JF Harper (1989) Molecular biology of the plasma membrane of higher plants. Plant Cell 1: 953–960

    Article  CAS  Google Scholar 

  78. Thibaud JB and Grignon C (1981) Mechanism of nitrate uptake:in corn roots. Plant Sci Lett 22: 279–289

    Article  CAS  Google Scholar 

  79. Tsai SM, Bonetti R, Agba SM and Rossetto R (1993) Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant Soil 152: 131–138

    Article  Google Scholar 

  80. Ullrich CI and Novacky AJ (1990) Extra- and intracellular pH and membrane potential changes induced by K+, Cl-, H2PO- 4, and NO- 3 uptake and fusicoccin in root hairs of Lim-nobium stoloniferum. Plant Physiol 94: 1561–1567

    Article  CAS  Google Scholar 

  81. Uloro Y and Mengel K (1994) Response of ensete (Ensete ven-tricosum W.) to mineral fertilizer applications under representative growth conditions in the vicinity of Hossaina, southwest Ethiopia. Fert Res 37: 107–113

    Article  CAS  Google Scholar 

  82. Van Volkenburgh E and Boyer JS (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol 77: 190–194

    Article  Google Scholar 

  83. Venkatesvarlu B and Rao AV (1987) Quantitative effects of field water deficits on N2 (C2H2) fixation in selected legumes grown in the Indian desert. Biol Fert Soils 5: 18–22

    Google Scholar 

  84. Werner D, Ahlborn B, Bassarab S, Kape F, Kinnback A, Mel-lor RB, Morschel E, Müller P, Parnike M, Schmidt P and Schultes A (1992) Nodule development and nitrogen fixation in the Rhizobium/Bradyrhizobium system. In: Mengel K and Pilbeam DJ (eds) Nitrogen Metabolism of Plants, pp 17–30. Proc Phytochem Soc Europe 33. Oxford Science Publications, UK

    Google Scholar 

  85. Yan F, Schubert S and Mengel K (1992) Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99: 415–421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schubert, S. (1995). Nitrogen assimilation by legumes — processes and ecological limitations. In: Ahmad, N. (eds) Nitrogen Economy in Tropical Soils. Developments in Plant and Soil Sciences, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1706-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1706-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7264-9

  • Online ISBN: 978-94-009-1706-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics