Skip to main content

Compartmentalization of digestion

  • Chapter
Biology of the Insect Midgut

Abstract

Biochemical and physiological processes that result in digestion of nutrient polymers in the insect midgut are arranged both spatially and temporally. This spatial and temporal separation is a result of morphological features of the gut tract combined with fluid fluxes that occur within the midgut. These features effectively compartmentalize buffering mechanisms responsible for pH and redox potential, enzymatic activity, absorption of nutrients, as well as excretory functions of the gut to specific regions and allow an efficient, sequential breakdown of food polymers into utilizable nutrients. In this chapter we will review evidence for this spatial arrangement of digestion in the midgut. This review will also stress the importance of an evolutionary or phylogenetic approach to an understanding of the many convergent and divergent morphological and biochemical features responsible for digestion in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adang, M.J. (1991) Bacillus thuringiensis insecticidal crystal proteins: gene structure, action, and utilization, in Biotechnology for Biological Control of Pests and Vectors (ed. K. Maramorosch), CRC Press, Boca Raton, pp. 3–24.

    Google Scholar 

  • Andersen, P.C., Brodbeck, B.V. and Mizell, R.F. (1989) Metabolism of amino acids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca coagulata. Entomol. Exp. Appl., 50, 149–59.

    Article  CAS  Google Scholar 

  • Andries, J.C. and Torpier, G. (1982) An extracellular brush border coat of lipid membranes in the midgut of Nepa cinerea (Insecta: Heteroptera): ultrastructure and genesis. Biol. Cell., 46, 195–202.

    Google Scholar 

  • Appel, H.M. and Martin, M.M. (1990) Gut redox conditions in herbivorous larvae. J. Chem. Ecol., 16, 3277–90.

    Article  CAS  Google Scholar 

  • Baerwald, R.J. and Delcarpio, J.B. (1983) Double membrane-bound intestinal microvilli in Oncopeltus fasciatus. Cell Tissue Res., 232, 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.E. (1981) Localization of proteolytic enzymes in the midguts of larvae of the black carpet beetle. J. Georgia Entomol. Soc., 16, 495–500.

    CAS  Google Scholar 

  • Baker, J.E., Woo, S.M. and Mullen, M.A. (1984) Distribution of proteinases and carbohydrases in the midgut of larvae of the sweetpotato weevil Cylas formicarius elegantulus and response of proteinases to inhibitors from sweet potato. Entomol. Exp. Appl., 36, 97–105.

    Article  CAS  Google Scholar 

  • Bayon, C. (1981) Modification ultrastructurales des parois vegetables dans le tube digestive d’une larve xylophage Oryctes nasicornis (Coleoptera, Scarabaeidae): rôle des bactéries. Can. J. Zool., 59, 2020–9.

    Article  Google Scholar 

  • Bayon, C. and Mathelin, J. (1980) Carbohydrate fermentation and byproduct absorption studied with labelled cellulose in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J. Insect Physiol., 26, 833–40.

    Article  CAS  Google Scholar 

  • Benemann, J.R. (1973) Nitrogen fixation in termites. Science, 181, 164–5.

    Article  PubMed  CAS  Google Scholar 

  • Bignell, D.E. (1981) Nutrition and digestion, in The American Cockroach, (eds W.J. Bell and K.G. Adiyodi), Chapman & Hall, London, pp. 57–86.

    Google Scholar 

  • Bignell, D.E. and Anderson, J.M. (1980) Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol., 26, 183–8.

    Article  CAS  Google Scholar 

  • Bignell, D.E., Oskarsson, H., Anderson, J.M. et al. (1983) Structure, microbial associations and function of the so-called ‘mixed segment’ of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. ZooL London, 201, 445–80.

    Article  Google Scholar 

  • Billingsley, P.F and Downe, A.E.R. (1985) Cellular localisation of aminopeptidase in the midgut of Rhodnius prolixus StÃ¥l (Hemiptera: Reduviidae) during blood digestion. Cell Tissue Res., 241, 421–8.

    Article  Google Scholar 

  • Billingsley, P.F. and Rudin, W. (1992) The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species. J. Parasitol., 78, 430–40.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. (1980) Ultra structure and function of midgut epithelium in the tsetse Glossina morsitans, Westw. (Diptera: Glossinidae). J. Entomol. Soc. S. Afr., 43, 195–214.

    Google Scholar 

  • Bulla, L.A., Kramer, K.J. and Davidson, L.I. (1977) Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J. Bacteriol., 130, 375–83.

    PubMed  CAS  Google Scholar 

  • Cheung, W.W.K. and Marshall, A.T. (1973) Water and ion regulation in cicadas in relation to xylem feeding. J. Insect Physiol., 19, 1801–16.

    Article  CAS  Google Scholar 

  • Cleveland, L.R., Hall, S.R., Sanders, E.P. and Collier, J. (1934) The wood-feeding roach, Cryptocercus, its protozoa, and the symbiosis between protozoa and the roach. Mem. Am. Acad. Arts Sci., 17, 185–343.

    Google Scholar 

  • Colepicolo-Neto, P., Bechara, E.J.H., Ferreira, C. and Terra, W.R. (1986) Evolutionary considerations of the spatial organization of digestion in the luminescent predaceous larvae of Pyrearinus termitilluminans (Coleoptera: Elateridae). Insect Biochem., 16, 811–17.

    Article  CAS  Google Scholar 

  • Crailsheim, K. (1988) Transport of leucine in the alimentary canal of the honeybee (Apis mellifera L.) and its dependence on season. J. Insect Physiol., 34, 1093–100.

    Article  CAS  Google Scholar 

  • Crowson, R.A. (1981) The Biology of Coleoptera, Academic Press, London.

    Google Scholar 

  • Del Bene, G., Dallai, R. and Marchini, D. (1991) Ultrastructure of the midgut and the adhering tubular salivary glands of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Int. J. Insect Morphol. Embryol., 20, 15–24.

    Article  Google Scholar 

  • DeLoach, J.R. and Spates, G.E. (1984) Glycosidase activity from midgut region of Stomoxys calcitrans (Diptera: Muscidae). Insect Biochem., 14, 169–73.

    Article  CAS  Google Scholar 

  • Dow, J.A.T. (1986) Insect midgut function. Adv. Insect Physiol., 19, 187–328.

    Article  CAS  Google Scholar 

  • Espinoza-Fuentes, F.P., Ferreira, C. and Terra, W.R. (1984) Spatial organization of digestion in the larval and imaginai stages of the sciarid fly Trichosia pubescens. Insect Biochem., 14, 631–8.

    Article  CAS  Google Scholar 

  • Espinoza-Fuentes, F.P. and Terra, W.R. (1987) Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem., 17, 809–17.

    Article  CAS  Google Scholar 

  • Felton, G.W. and Duffey, S.S. (1991) Reassessment of the role of the gut alkalinity and detergency in insect herbivory. J. Chem. Ecol., 17, 1821–36.

    Article  CAS  Google Scholar 

  • Ferreira, C., Bellinello, G.L., Ribeiro, A.F. and Terra, W.R. (1990b) Digestive enzymes associated with the glycocalyx, microvillar membranes and secretory vesicles from midgut cells of Tenebrio molitor larvae. Insect Biochem., 20, 839–47.

    Article  CAS  Google Scholar 

  • Ferreira, C., Capella, A.N., Sitnik, R. and Terra, W.R. (1994) Digestive enzymes in midgut cells, endo- and ectoperitrophic contents and peritrophic membranes of Spodoptera frugiperda (Lepidoptera) larvae. Arch. Insect Biochem. Physiol., 26, 299–313.

    Article  CAS  Google Scholar 

  • Ferreira, C., Oliveira, M.C. and Terra, W.R. (1990a) Compartmentalization of the digestive process in Abracris flavolineata (Orthoptera: Acrididae). Insect Biochem., 20, 267–74.

    Article  CAS  Google Scholar 

  • Ferreira, C., Ribeiro, A.F., Garcia, E.S. and Terra, W.R. (1988) Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem., 18, 521–30.

    Article  CAS  Google Scholar 

  • Ferreira, C., Ribeiro, A.F. and Terra, W.R. (1981) Fine structure of the larval midgut of the fly Rhynchosciara and its physiological implications. J. Insect Physiol., 27, 559–70.

    Article  Google Scholar 

  • Ferreira, C. and Terra, W.R. (1980) Intracellular distribution of hydrolases in midgut caeca cells from an insect with emphasis on plasma membrane-bound enzymes. Comp. Biochem. Physiol., 66B, 467–73.

    CAS  Google Scholar 

  • Ferreira, C. and Terra, W.R. (1989) Spatial organization of digestion, secretory mechanisms and digestive enzyme properties in Pheropsophus aequinoctialis (Coleoptera: Carabidae). Insect Biochem., 19, 383–91.

    Article  CAS  Google Scholar 

  • Griffiths, B.S. and Cheshire, M.V. (1987) Digestion and excretion of nitrogen and carbohydrate by the cranefly larva Tipula paludosa (Diptera: Tipulidae). Insect Biochem., 17, 277–82.

    Article  CAS  Google Scholar 

  • Hogan, M.E., Slaytor, M. and O’Brien, R.W. (1985) Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Sausurre and the termite, Mastotermes darwiniensis Frogatt. J. Insect Physiol., 31, 587–91.

    Article  CAS  Google Scholar 

  • Hogan, M., Veivers, P.C., Slaytor, M. and Czolij, R.T. (1988) The site of cellulose breakdown in higher termites. J. Insect Physiol., 34, 891–9.

    Article  CAS  Google Scholar 

  • Hofmann, C.H., Vanderbruggen, H., Höfte, J. et al. (1988) Specificity of Bacillus thuringiensis-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl Acad. Sci. USA, 85, 7844–8.

    Article  PubMed  CAS  Google Scholar 

  • Hofte, H. and Whiteley, H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 53, 242–55.

    PubMed  CAS  Google Scholar 

  • Houseman, J.G., Campbell, F.C. and Morrison, P.E. (1987) A preliminary characterization of digestive proteases in the posterior midgut of the stable fly Stomoxys calcitrans (L.) (Diptera: Muscidae). Insect Biochem., 17, 213–18.

    Article  CAS  Google Scholar 

  • Houseman, J.G. and Downe, A.E.R. (1980) Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae). Insect Biochem., 10, 363–6.

    Article  CAS  Google Scholar 

  • Jimenez, D.R. and Gilliam, M. (1990) Ultrastructure of ventriculus of the honey bee Apis mellifera (L.): cytochemical localization of the acid phosphatase, alkaline phosphatase, and non-specific esterase. Cell Tissue Res., 261, 431–43.

    Article  CAS  Google Scholar 

  • Klinkowstrom, A.M., Terra, W.R. and Ferreira, C. (1994) Aminopeptidase A from Rhynchosciara americana (Diptera) larval midguts: properties and midgut distribution. Arch. Insect Biochem. Physiol., 27, 301–5.

    Article  CAS  Google Scholar 

  • Klungness, L.M. and Peng, Y.S. (1984) A histochemical study of pollen digestion in the alimentary canal of the honeybee (Apis mellifera L.). J. Insect Physiol., 30, 511–21.

    Article  Google Scholar 

  • Kramer, K.J. (1995) Protein resources for insect pest management, in Proc. of the 33rd US-Japan Natural Resources Protein Panel (ed. A. Pavlath), Berkeley Press, Berkeley, CA (in press).

    Google Scholar 

  • Kristensen, N.P. (1981) Phylogeny of insect orders. Annu. Rev. Entomol., 26, 135–57.

    Article  Google Scholar 

  • Lane, N.J. and Harrison, J.B. (1979) An unusual cell surface modification: a double plasma membrane. J. Cell Sci., 39, 355–72.

    PubMed  CAS  Google Scholar 

  • Lawrence, J.F. and Newton, A.F. Jr (1982) Evolution and classification of beetles. Annu. Rev. Ecol. Syst., 13, 261–90.

    Article  Google Scholar 

  • Lemos, F.J.A. and Terra, W.R. (1991) Properties and intracellular distribution of a cathepsin D-like proteinase active at the acid region of Musca domestica midgut. Insect Biochem., 21, 457–65.

    Article  CAS  Google Scholar 

  • Lindsay, K.L. and Marshall, A.T. (1980) Ultrastructure of the filter chamber complex in the alimentary canal of Eurymela distincta Signoret (Homoptera, Eurymelidae). Int. J. Insect Morphol. Embryol., 9, 179–98.

    Article  Google Scholar 

  • Lindsay, K.L. and Marshall, A.T. (1981) The osmoregulatory role of the filter-chamber in relation to phloem-feeding in Eurymela distincta (Cicadelloidea, Homoptera). Physiol. Entomol., 6, 413–19.

    Article  Google Scholar 

  • Marshall, A.T. and Cheung, W.W.K. (1974) Studies on water and ion transport in homopteran insects: ultrastructure and cytochemistry of the cicadoid and cercopoid Malpighian tubules and filter chamber. Tissue Cell., 6, 153–71.

    Article  PubMed  CAS  Google Scholar 

  • Martin, M.M. (1987) Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology, Ithaca, Cornell.

    Google Scholar 

  • Mittler, T.E. (1958) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol., 35, 74–84.

    CAS  Google Scholar 

  • Moffatt, M.R. and Lehane, M.J. (1990) Trypsin is stored as an inactive zymogen in the midgut of Stomoxys calcitrans. Insect Biochem., 20, 719–23.

    Article  CAS  Google Scholar 

  • Moloo, S.K. and Kutuza, S.B. (1970) Feeding and crop emptying in Glossina brevipalpis Newstead. Acta Trop., 27, 356–77.

    PubMed  CAS  Google Scholar 

  • Morgan, M.R.J. (1976) Gut carbohydrases in locusts and grasshoppers. Acrida, 5, 45–58.

    Google Scholar 

  • O’Loughlin, G.T. and Chambers, T.C. (1972) Extracellular microtubules in the aphid gut. J. Cell Biol., 53, 575–8.

    Article  PubMed  Google Scholar 

  • Parenti, P., Sacchi, F.V., Hanozet, G.M. and Giordana, B. (1986) Na-dependent uptake of phenylalanine in the midgut of a cockroach (Blabera gigantea). J. Comp. Physiol. B, 156, 549–56.

    Article  CAS  Google Scholar 

  • Peterson, A.M., Barillas-Mury, C.V. and Wells, M.A. (1994) Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta. Insect Biochem. Mol. Biol., 24, 463–71.

    Article  PubMed  CAS  Google Scholar 

  • Reger, J.F. (1971) Fine structure of the surface coat of the midgut epithelial cells in the homopteran Phylloscelis atra (Fulgorid). J. Submicrosc. Cytol., 3, 353–8.

    Google Scholar 

  • Santos, C.D., Ferreira, C. and Terra, W.R. (1983) Consumption of food and spatial organization of digestion in the cassava hornworm, Erinnyis ello. J. Insect Physiol., 29, 707–14.

    Article  CAS  Google Scholar 

  • Santos, C.D., Ribeiro, A.F. and Terra, W.R. (1986) Differential centrifugation, calcium precipitation and ultrasonic disruption of midgut cells of Erinnyis ello caterpillars. Purification of cell microvilli and inferences concerning secretory mechanisms. Can. J. Zool., 64, 490–500.

    Article  CAS  Google Scholar 

  • Schneider, M., Rudin, W. and Hecker, H. (1987) Absorption and transport of radioactive tracers in the midgut of the malaria mosquito, Anopheles stephensi. J. Ultrastruc. Mol Struct. Res., 97, 50–63.

    Article  Google Scholar 

  • Schuch, R.T. (1986) The influence of cladistics on heteropteran classification. Annu. Rev. Entomol., 31, 67–93.

    Article  Google Scholar 

  • Schumaker, T.T.S., Cristofoletti, P.T. and Terra, W.R. (1993) Properties and compartmentalization of digestive carbohydrases and proteases in Scaptotrigona bipunctata (Apidae: Meliponinae) larvae. Apidologie, 24, 3–17.

    Article  CAS  Google Scholar 

  • Scrivener, A.M., Slaytor, M. and Rose, H.A. (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. J. Insect Physiol., 35, 935–41.

    Article  Google Scholar 

  • Silva, C.P. and Terra, W.R. (1994) Digestive and absorptive sites along the midgut of the cotton seed sucker bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Insect Biochem. Mol Biol., 24, 493–505.

    Article  CAS  Google Scholar 

  • Slaytor, M. (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem. Physiol., 103B, 775–84.

    CAS  Google Scholar 

  • Taylor, E.C. (1985) Cellulose digestion in a leaf eating insect, the Mexican beetle, Epilachna varivestis. Insect Biochem., 15, 315–20.

    Article  CAS  Google Scholar 

  • Teo, L.H. and Woodring, J.P. (1988) The digestive protease and lipase in the house cricket Acheta domesticus. Insect Biochem., 18, 363–7.

    Article  CAS  Google Scholar 

  • Terra, W.R. (1988) Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz. J. Med. Biol. Res., 21, 675–734.

    PubMed  CAS  Google Scholar 

  • Terra, W.R. (1990) Evolution of digestive systems of insects. Annu. Rev. Entomol., 35, 181–200.

    Article  Google Scholar 

  • Terra, W.R. and Ferreira, C. (1981) The physiological role of the peritrophic membrane and trehalase: digestive enzymes in the midgut and excreta of starved larvae of Rhynchosciara. J. Insect Physiol., 27, 325–31.

    Article  CAS  Google Scholar 

  • Terra, W.R. and Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol., 109B, 1–62.

    CAS  Google Scholar 

  • Terra, W.R., Ferreira, C. and Bastos, F. (1985) Phylogenetic considerations of insect digestion. Disaccharidases and the spatial organization of digestion in the Tenebrio molitor larvae. Insect Biochem., 15, 443–9.

    Article  CAS  Google Scholar 

  • Terra, W.R., Ferreira, C. and De Bianchi, A.G. (1979) Distribution of digestive enzymes among the endo- and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J. Insect Physiol., 25, 487–94.

    Article  CAS  Google Scholar 

  • Terra, W.R., Ferreira, C. and Garcia, E.S. (1988) Origin, distribution, properties and functions of the major Rhodnius prolixus midgut hydrolases. Insect Biochem., 18, 423–34.

    Article  CAS  Google Scholar 

  • Terra, W.R, Santos, C.D. and Ribeiro, A.F. (1990) Ultrastructural and biochemical basis of the digestion of nectar and other nutrients by the moth Erinnyis ello. Entomol. Exp. Appl., 56, 277–86.

    Article  CAS  Google Scholar 

  • Thorne, B.L. and Carpenter, J.M. (1992) Phylogeny of the Dictyoptera. Syst. Entomol., 17, 253–68.

    Article  Google Scholar 

  • Waterhouse, D.F. (1952) Studies on the digestion of wood by insects. VI. The pH and oxidation potential of the alimentary canal of the clothes moth larvae (Tineola bisselliella (Humm.)). Aust. J. Biol. Sci., 5B, 178–88.

    Google Scholar 

  • Wigglesworth, V.B. (1972) The Principles of Insect Physiology, 7th edn, Methuen, London.

    Google Scholar 

  • Yang, Y.J. and Davies, D.M. (1968) Digestion, emphasizing trypsin activity, in adult simuliids (Diptera) fed blood, blood-sucrose mixtures, and sucrose. J. Insect Physiol., 14, 205–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Terra, W.R., Ferreira, C., Baker, J.E. (1996). Compartmentalization of digestion. In: Lehane, M.J., Billingsley, P.F. (eds) Biology of the Insect Midgut. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1519-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1519-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7179-6

  • Online ISBN: 978-94-009-1519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics