Skip to main content

The peritrophic matrix

  • Chapter
Biology of the Insect Midgut

Abstract

Two historical motivations for the study of insects involves their competition with human beings for the same food supply and their influence on human health. The insect midgut has pivotal roles in both of these aspects of the relationship between humans and insects (see also Chapters 6–8 and 16). In particular, the functions of the peritrophic matrix (PM) which lines the gut of most insects, is intimately associated with the digestive process in insects and the cycle of invasion and transmission of many insect-borne pathogens. Despite its central importance in these events, there is relatively little known of the detailed molecular structure and functions of the PM. In part, this deficiency is caused by the wide variety of insect PM structures and the multiple functions of this matrix. Because of this variety, it is impractical to comprehensively describe all PM structures. Rather, examples will be cited which illustrate general aspects of the PM structure, recent advances in the understanding of its molecular structure and unifying concepts relating to the functions of this matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedi, Z.H. and Brown, A.W.A. (1961) Peritrophic membrane as a vehicle for DDT and DDE excretion in Aedes aegypti larvae. Ann. Entomol. Soc. Am., 54, 539–42.

    CAS  Google Scholar 

  • Adang, M.J. and Spence, K.D. (1982) Biochemical comparisons of the peritrophic membrane of the lepidopterans Orgyia pseudotsugata and Manduca sexta. Comp. Biochem. Physiol., 73B, 645–9.

    CAS  Google Scholar 

  • Allen, A. (1983) Mucus — a protective secretion of complexity. Trends Biochem. Sci., 8, 169–73.

    Article  CAS  Google Scholar 

  • Bain, O., Philippon, B., Séchan, Y. and Cassone, J. (1976) Corrélation entre le nombre de microfilaires ingérées et l’épaisseur de la membrane péritrophique du vecteur dans l’Onchocercose de savane africain. C. R. Acad. Sci. Paris D, 283, 391–2.

    CAS  Google Scholar 

  • Balbiani, E.G. (1890) Études anatomiques et histologiques sur le tube digestif des Cryptops. Arch. Zool. Exp. Gen., 8, 1–82.

    Google Scholar 

  • Barbehenn, R.V. and Martin, M.M. (1992) The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera). J. Insect Physiol., 38, 973–80.

    Article  CAS  Google Scholar 

  • Barbehenn, R.V. and Martin, M.M. (1995) Peritrophic envelope permeability in herbivorous insects. J. Insect Physiol., 41, 303–11.

    Article  CAS  Google Scholar 

  • Becker, B. (1978a) Determination of the formation rate of peritrophic membranes in some Diptera. J. Insect Physiol., 24, 529–33.

    Article  Google Scholar 

  • Becker, B. (1978b) Effects of 20-hydroxy-ecdysone, juvenile hormone, Dimilin, and Captan on in vitro synthesis of peritrophic membranes in Calliphora erythrocephala. J. Insect Physiol., 24, 699–705.

    Article  CAS  Google Scholar 

  • Becker, B. (1980) Effects of Polyoxin D on in vitro synthesis of peritrophic membranes in Calliphora erythrocephala. Insect Biochem., 10, 101–6.

    Article  CAS  Google Scholar 

  • Becker, B., Peters, W. and Zimmermann, U. (1975) In vitro synthesis of peritrophic membranes of the blowfly, Calliphora erythrocephala. J. Insect Physiol., 21, 1463–70.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E.A. and Chamberlain, D.J. (1980) Tolerance of ingested tannin in Schistocerca gregaria. J. Insect Physiol., 26, 415–20.

    Article  CAS  Google Scholar 

  • Bernays, E.A., Chamberlain, D.J. and McCarthy, P. (1980) The differential effects of ingested tannic acid on different species of Acridoidea. Entomol. Exp. Appl., 28, 158–66.

    Article  CAS  Google Scholar 

  • Berner, R., Rudin, W. and Hecker, H. (1983) Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions. J. Ultrastruct. Res., 83, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Billingsley, P.F. (1994) Vector-parasite interactions for vaccine development. Int. J. Parasitai., 24, 53–8.

    Article  CAS  Google Scholar 

  • Billingsley, P.F. and Rudin, W. (1992) The role of the mosquito peritrophic membrane in blood meal digestion and infectivity of Plasmodium species. J. Parasitol., 78, 430–40.

    Article  PubMed  CAS  Google Scholar 

  • Binnington, K.C. (1988) Ultrastructure of the peritrophic membrane-secreting cells in the cardia of the blowfly, Lucilia cuprina. Tissue Cell, 20, 269–81.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, K., Wallbanks, K.R., Molyneux, D.H. et al. (1988) The peritrophic membrane of the female sandfly Phlebotomus papatasi. Ann. Trop. Med. Parasitol., 82, 613–19.

    PubMed  CAS  Google Scholar 

  • Boulter, D. (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry, 34, 1453–66.

    Article  PubMed  CAS  Google Scholar 

  • Christian, P.D. and Oakeshott, J.G. (1989) The potential of genetically engineered baculoviruses for insect pest control. Aust. J. Biotechnol., 3, 264–6.

    Google Scholar 

  • Clarke, L., Temple, G.H.R. and Vincent, J.F.V. (1977) The effects of a chitin inhibitor — Dimilin — on the production of peritrophic membrane in the locust, Locusta migratoria. J. Insect Physiol., 23, 241–6.

    Article  PubMed  CAS  Google Scholar 

  • de Mets, R., and Jeuniaux, C. (1962) Sur les substances organiques constituant la membrane péritrophique des insectes. Arch. Int. Physiol Biochim., 70, 93–6.

    Article  CAS  Google Scholar 

  • Derksen, A.C.G. and Granados, R.R. (1988) Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology, 167, 242–50.

    Article  PubMed  CAS  Google Scholar 

  • Dimitriadis, V.K. (1985) Ultrastructural analysis of peritrophic membrane function of Drosophila auraria larvae. J. Submicrosc. Cytol., 17, 293–7.

    PubMed  CAS  Google Scholar 

  • Dörner, R. and Peters, W. (1988) Localization of sugar components of glycoproteins in peritrophic membranes of larvae of Diptera (Culicidae, Simuliidae). Entomol. Gen., 14, 11–24.

    Google Scholar 

  • East, I.J., Fitzgerald, C.J., Pearson, R.D. et al. (1993) Lucilia cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. Int. J. Parasitol., 23, 221–9.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi, M. and Iwamoto, A. (1976) Alkaline proteases in the midgut tissue and digestive fluid of the silkworm Bombyx mori. Insect Biochem., 6, 491–6.

    CAS  Google Scholar 

  • Eguchi, M., Iwamoto, A. and Yamauchi, K. (1982) Interrelation of proteases from the midgut lumen, epithelia and peritrophic membrane of the silkworm, Bombyx mori L. Comp. Biochem. Physiol., 72A, 359–63.

    Article  CAS  Google Scholar 

  • Eisemann, C.H., Donaldson, R.A., Pearson, R.D. et al. (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol. Exp. Appl., 72, 1–10.

    Article  CAS  Google Scholar 

  • Ellis, D.S. and Evans, D.A. (1977) Passage of Trypanosoma brucei rhodesciense through the peritrophic membrane of Glossina morsitans morsitans. Nature (London), 267, 834–5.

    Article  CAS  Google Scholar 

  • Elvin, C.M., Vuocolo, T., Pearson, R.D. et al. (1996) Characterization of a major peritrophic membrane-protein, peritrophin-44, from the larvae of Lucila cuprina — cDNA and deduced amino acid sequences. J. Biol. Chem., 271, 8925–35.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D.A. and Ellis, D.S. (1983) Recent observations on the behaviour of certain trypanosomes within their insect hosts. Adv. Parasitol., 22, 1–42.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D.A., Ellis, D.S. and Stamford, S. (1979) Ultra structural studies on certain aspects of the development of Trypanosoma congolense in Glossina morsitans morsitans. J. Protozool., 26, 557–63.

    PubMed  CAS  Google Scholar 

  • Ferreira, C., Capella, A.N., Sitnik, R. and Terra, W.R. (1994) Properties of the digestive enzymes and the permeability of the peritrophic membrane of Spodoptera frugiperda (Lepidoptera) larvae. Comp. Biochem. Physiol., 107a, 631–40.

    Article  CAS  Google Scholar 

  • Ferreira, C., Ribeiro, A.F. and Terra, W.R. (1981) Fine structure of the larval midgut of the fly Rhynchgosciara americana and its physiological implications. J. Insect Physiol., 27, 559–70.

    Article  Google Scholar 

  • Freyvogel, T. and Stäubli, W. (1965) The formation of peritrophic membranes in Culicidae. Acta Trop., 22, 118–47.

    PubMed  CAS  Google Scholar 

  • Friedel, T., Hales, D.F. and Birch, D. (1988) Cyromazine-induced effects on the larval cuticle of the sheep blowfly, Lucilia cuprina: ultrastructural evidence for a possible mode of action. Pesticide Biochem. Physiol., 31, 99–107.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., Hilder, V.A., Powell, K. et al. (1992) Potential of plant-derived genes in the genetic manipulation of crops for insect resistance. Proceedings of the 8th Symposium of Insect-Plant Relationships, Kluwer Academic, Dordrecht, pp. 221–33.

    Google Scholar 

  • Houk, E.J., Obie, F. and Hardy, J.L. (1979) Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis Coquillet (Insecta, Diptera). Acta Trop., 36, 39–45.

    PubMed  CAS  Google Scholar 

  • Huber, M., Cabib, E. and Miller, L.H. (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc. Natl Acad. Sci. USA, 88, 2807–10.

    Article  PubMed  CAS  Google Scholar 

  • Kenchington, W. (1976) Adaptation of insect peritrophic membranes to form cocoon fabrics, in The Insect Integument (ed. H.R. Hepburn), Elsevier, Amsterdam, pp. 497–513.

    Google Scholar 

  • Lehane, M.J. (1976) Formation and histochemical structure of the peritrophic membrane in the stablefly, Stomoxys calcitrans. J. Insect Physiol., 22, 1551–7.

    Article  PubMed  CAS  Google Scholar 

  • Lehane, M.J., Allingham, P. and Weglicki, P. (1996) Peritrophic matrix composition of the tsetse fly, Glossina morsitans morsitans. Cell Tissue Res., 283, 375–84.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.S. and Kirkham, J.B. (1989) Dynamic role of microvilli in peritrophic membrane formation. Tissue Cell, 21, 627–38.

    Article  PubMed  CAS  Google Scholar 

  • Meis, J.F.G.M. and Ponnudurai, T. (1987) Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes. Parasitol. Res., 73, 500–6.

    Article  PubMed  CAS  Google Scholar 

  • Mello, M.L., Vidal, B.C. and Valdrighi, L. (1971) The larval peritrophic membrane of Melipona quadrifasciata (Hymenoptera: Apoidae). Protoplasma, 73, 349–65.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, E.H. and Day, M.F. (1952) The fine structure of the peritrophic membrane of certain insects. Biol. Bull., 103, 384–94.

    Article  Google Scholar 

  • Miller, N. and Lehane, M.J. (1990) In vitro perfusion studies on the peritrophic membrane of the tsetse fly Glossina morsitans morsitans (Diptera, Glossinidae). J. Insect Physiol., 36, 813–18.

    Article  Google Scholar 

  • Miller, N. and Lehane, M.J. (1993a) Peritrophic membranes, cell surface molecules and parasite tropisms within arthropod vectors. Parasitol Today, 9, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Miller, N. and Lehane, M.J. (1993b) Ionic environment and the permeability properties of the peritrophic membrane of Glossina morsitans morsitans. J. Insect Physiol., 39, 139–44.

    Article  Google Scholar 

  • Mowatt, M.R., Wisdom, G.S. and Clayton, C.E. (1989) Variation of tandem repeats in the developmentally regulated procyclic acidic repetitive proteins of Trypanosoma brucei. Mol Cell Biol., 9, 1332–5.

    PubMed  CAS  Google Scholar 

  • Ono, M. and Kato, S. (1968) Amino acid composition of the peritrophic membrane of the silkworm, Bombyx mori L. Bull. Sericultural Exp. Station Jap., 23, 1–8.

    CAS  Google Scholar 

  • Perrone, J.B. and Spielman, A. (1988) Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti. Cell Tissue Res., 252, 473–8.

    Article  PubMed  CAS  Google Scholar 

  • Peters, W. (1976) Investigations on the peritrophic membranes of Diptera, in The Insect Integument (ed. H.R. Hepburn), Elsevier, Amsterdam, pp. 515–43.

    Google Scholar 

  • Peters, W. (1979) The fine structure of peritrophic membranes of mosquito and blackfly larvae of the genera Aedes, Anopheles, Culex and Odagmia (Diptera: Culicidae/Simuliidae). Entomol Gen., 5, 289–99.

    Google Scholar 

  • Peters, W. (1992) Peritrophic Membranes, Zoophysiology Series Vol. 30, Springer, Berlin, 238 pp.

    Google Scholar 

  • Peters, W. and Kalnins, M. (1985) Aminopeptidases as immobilized enzymes on the peritrophic membranes of insects. Entomol Gen., 11, 25–32.

    Google Scholar 

  • Peters, W., Kolb, H. and Kolb-Bachofen, V. (1983) Evidence for a sugar receptor (lectin) in the peritrophic membrane of the blowfly larva, Calliphora erythrocephala Mg. (Diptera). J. Insect Physiol., 29, 275–80.

    Article  CAS  Google Scholar 

  • Peters, W. and Latka, I. (1986) Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin. Histochemistry, 84, 155–60.

    Article  PubMed  CAS  Google Scholar 

  • Peters, W. and Wiese, B. (1986) Permeability of the peritrophic membranes of some Diptera to labelled dextrans. J. Insect Physiol., 32, 43–9.

    Article  CAS  Google Scholar 

  • Ponnudurai, T., Billingsley, P.F. and Rudin, W. (1988) Differential infectivity of Plasmodium for mosquitoes. Parasitol Today, 4, 319–21.

    Article  PubMed  CAS  Google Scholar 

  • Ramos, A., Mahowald, A. and Jacobs-Lorena, M. (1993) Gut-specific genes from the black fly Simulium vittatum encoding trypsin-like and carboxy-peptidase-like proteins. Insect Mol. Biol., 1, 149–63.

    Article  PubMed  CAS  Google Scholar 

  • Ramos, A., Mahowald, A. and Jacobs-Lorena, M. (1994) Peritrophic matrix of the black fly Simulium vittatum: formation, structure and analysis of its protein components. J. Exp. Zool., 268, 269–81.

    Article  PubMed  CAS  Google Scholar 

  • Reid, G.D.P. and Lehane, M.J. (1984) Peritrophic membrane formation in three temperature simuliids, Simulium ornatum, S. equinum and S. lineatum, with respect to the migration of onchocercal microfilariae. Ann. Trop. Med. Parasitol., 78, 527–39.

    PubMed  CAS  Google Scholar 

  • Richards, A.G. (1978) The chemistry of insect cuticle, in Biochemistry of Insects (ed. M. Rockstein), Academic Press, New York, pp. 205–32.

    Google Scholar 

  • Richards, A.G. and Richards, P.A. (1971) Origin and composition of the peritrophic membrane of the mosquito, Aedes aegypti. J. Insect Physiol., 17, 2253–75.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A.G. and Richards, P.A. (1977) The peritrophic membranes of insects. Annu. Rev. Entomol., 22, 219–40.

    Article  PubMed  Google Scholar 

  • Richardson, M. and Romoser, W.S. (1972) The formation of the peritrophic membrane in adult Aedes triseriatus (Say) (Diptera: Culicidae). J. Med. Entomol., 9, 495–500.

    PubMed  CAS  Google Scholar 

  • Rippon, G.D. (1987) An investigation of the structure and function of the peritrophic membrane of the American cockroach, Periplaneta americana, with special reference to the possible effects of tannins on water movement and permeability of dyes through the peritrophic membrane. PhD Thesis, University of Adelaide, South Australia, Australia.

    Google Scholar 

  • Rudall, K.M. and Kenchington, W. (1971) Arthropod silks: the problem of fibrous proteins in animal tissues. Annu. Rev. Entomol., 16, 73–96.

    Article  CAS  Google Scholar 

  • Rudall, K.M. and Kenchington, W. (1973) The chitin system. Biol. Rev., 48, 597–636.

    Article  CAS  Google Scholar 

  • Rudin, W. and Hecker, H. (1989) Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res., 75, 268–79.

    Article  PubMed  CAS  Google Scholar 

  • Rupp, R.A. and Spence, K.D. (1985) Protein alterations in Manduca sexta midgut and haemolymph following treatment with a sublethal dose of Bacillus thuringiensis crystal endotoxin. Insect Biochem., 15, 147–54.

    Article  CAS  Google Scholar 

  • Ryerse, J.S., Purcell, J.P. and Sammons, R.D. (1994) Structure and formation of the peritrophic membrane in the larva of the southern corn rootworm, Diabrotica undecimpunctata. Tissue Cell, 26, 431–7.

    Article  PubMed  CAS  Google Scholar 

  • Ryerse, J.S., Purcell, J.P., Sammons, R.D. and Lavrik, P.B. (1992) Peritrophic membrane structure and formation in the larva of a moth, Heliothis. Tissue Cell, 24, 751–71.

    Article  PubMed  CAS  Google Scholar 

  • Santos, D.C. and Terra, W.R. (1986) Distribution and characterization of oligomeric digestive enzymes from Erinnyis ello larvae and inferences concerning secretory mechanisms and the permeability of the peritrophic membrane. Insect Biochem., 16, 691–700.

    Article  CAS  Google Scholar 

  • Schiein, Y., Jacobson, R.L. and Schiomai, J. (1991) Chitinase secreted by Leishmania functions in the sandfly vector. Proc. R. Soc. London, 245, 121–6.

    Article  Google Scholar 

  • Shahabuddin, M. (1995) Chitinase as a vaccine. Parasitol Today, 11, 46–7.

    Article  PubMed  CAS  Google Scholar 

  • Sieber, K.-P., Huber, M., Kaslow, D. et al. (1991) The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp. Parasitol., 72, 145–56.

    Article  PubMed  CAS  Google Scholar 

  • Spence, K.D. (1991) Structure and physiology of the peritrophic membrane, in Physiology of the insect Epidermis (eds K. Binnington and A. Retnakaran), Inkata Press, Melbourne, pp. 77–93.

    Google Scholar 

  • Spence, K.D. and Kawata, M.Y. (1993) Permeability characteristics of the peritrophic membranes of Manduca sexta larvae. J. Insect Physiol., 39, 785–90.

    Article  CAS  Google Scholar 

  • Stamm, B., D’Haese, J. and Peters, W. (1978) SDS gel electrophoresis of proteins and glycoproteins from peritrophic membranes of some Diptera. J. Insect Physiol., 24, 1–8.

    Article  CAS  Google Scholar 

  • Stohler, H. (1957) Analyse des Infektionsverlaufes von Plasmodium gallinaceum im Darme von Aedes aegypti. Acta Trop., 14, 302–52.

    PubMed  CAS  Google Scholar 

  • Stoltz, D.B. and Summers, M.D. (1971) Pathway of infection of mosquito iridescent virus. I. Preliminary observations on the fate of ingested virus. J. Virol., 8, 900–9.

    PubMed  CAS  Google Scholar 

  • Sudha, P.M. and Muthu, S.P. (1988) Damage to the midgut epithelium caused by food in the absence of peritrophic membrane. Curr. Sci., 57, 624–5.

    Google Scholar 

  • Sumida, M., Yuan, X.L. and Matsubara, F. (1994) Sucrose activity and its kinetic properties in peritrophic membrane, and in membrane-bound and soluble fractions of midgut in the silkworm, Bombyx mori. Comp. Biochem. Physiol., 108b, 255–64.

    Google Scholar 

  • Tellam, R.L., Casu, R.E. and Eisemann, C.H. (1994a) Recombinant blowfly strike antigen. Australian Provisional Patent Application No. PM5235.

    Google Scholar 

  • Tellam, R.L., Eisemann, C.H., East, I. and Elvin, C. (1992) Flystrike antigen and vaccine and method for preparation. Australian Patent Application No. 29716/92.

    Google Scholar 

  • Tellam, R.L., Schorderet, S. and Eisemann, C. (1994b) Antigen for inclusion in a vaccine against blowfly strike. Australian Provisional Patent Application No. PM8452.

    Google Scholar 

  • Terra, W.R. (1990) Evolution of digestive systems of insects. Annu. Rev. Entomol., 35, 181–200.

    Article  Google Scholar 

  • Terra, W.R. and Ferreira, C. (1981) The physiological role of the peritrophic membrane and trehalase: digestive enzymes in the midgut and excreta of starved larvae of Rhynchosciara. J. Insect Physiol., 27L, 325–31.

    Article  Google Scholar 

  • Terra, W.R. and Ferreira, C. (1983) Further evidence that enzymes involved in the final stages of digestion by Rhynchosciara do not enter the endoperitrophic space. Insect Biochem., 13, 143–50.

    Article  CAS  Google Scholar 

  • Terra, W.R. and Ferreira, C. (1994) Insect digestive enzymes — properties, compartmentalisation and function. Comp. Biochem. Physiol [B], 109, 1–62.

    Article  Google Scholar 

  • van Handel, E. and Romoser, W.S. (1987) Proteolytic activity in the ectoperitrophic fluid of blood-fed Culex nigripalpus. Med. Vet. Entomol., 1, 251–5.

    Article  PubMed  Google Scholar 

  • Walker, V.K., Geer, B.W. and Williamson, J.H. (1980) Dietary modulation and histochemical localization of leucine aminopeptidase activity in Drosophila melanogaster larvae. Insect Biochem., 10, 543–8.

    Article  CAS  Google Scholar 

  • Walters, L.L., Irons, K.P., Guzman, H. and Tesh, R.B. (1993) Formation and composition of the peritrophic membrane in the sand fly, Phlebotomus perniciosus (Diptera: Psychodidae). J. Med. Entomol., 30, 179–98.

    PubMed  CAS  Google Scholar 

  • Waterhouse, D.F. (1953a) Studies on the digestion of wool by insects. IX. Some features of digestion in chewing lice (Mallophaga) from bird and mammalian hosts. Aust. J. Biol. Sci., 6, 257–75.

    PubMed  CAS  Google Scholar 

  • Waterhouse, D.F. (1953b) Occurrence and endodermal origin of the peritrophic membrane in some insects. Nature (London), 172, 676.

    Article  CAS  Google Scholar 

  • Waterhouse, D.F. (1954) The rate of production of the peritrophic membrane in some insects. Aust. J. Biol. Sci., 7, 59–72.

    PubMed  CAS  Google Scholar 

  • Weaver, S.C. and Scott, T.W. (1990) Peritrophic membrane formation and cellular turnover in the midgut of Culiseta melanura (Diptera: Culicidae). J. Med. Entomol., 27, 864–73.

    PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B. (1930) The formation of the peritrophic membrane in insects, with special reference to the larvae of mosquitoes. Q. J. Microsc. Sci., 73, 593–616.

    Google Scholar 

  • Willadsen, P., Eisemann, C.H. and Tellam, R.L. (1993) ‘Concealed’ antigens: expanding the range of immunological targets. Parasitol. Today, 9, 132–4.

    Article  PubMed  CAS  Google Scholar 

  • Yunovitz, H., Sneh, B., Schuster, S. et al. (1986) A new sensitive method for determining the toxicity of a highly purified fraction from d-endotoxin produced by Bacillus thuringiensis var. entomocidus on isolated larval midgut of Spodoptera littoralis (Lepidoptera, Noctuidae). J. Invert. Pathol., 48, 223–31.

    Article  CAS  Google Scholar 

  • Zhuzhikov, D.P. (1964) Function of the peritrophic membrane in Musca domestica L. and Calliphora erythrocephala Meig. J. Insect Physiol., 10, 273–8.

    Article  CAS  Google Scholar 

  • Zimmermann, D. and Peters, W. (1987) Fine structure and permeability of peritrophic membranes of Calliphora erythrocephala (Meigen) (Insecta: Diptera) after inhibition of chitin and protein synthesis. Comp. Biochem. Physiol., 86b, 353–60.

    CAS  Google Scholar 

  • Zimmermann, U. and Mehlan, D. (1976) Water transport across peritrophic membranes of Calliphora erythrocephala. Comp. Biochem. Physiol., 55A, 119–26.

    Article  Google Scholar 

  • Zimmermann, U., Mehlan, D. and Peters, W. (1973) Investigations on the transport function and structure of peritrophic membranes. III. Periodic incorporation of glucose, methionine, and cysteine into the peritrophic membranes of the blowfly Calliphora erythrocephala Mg. in vivo and in vitro. Comp. Biochem. Physiol., 45B, 683–93.

    Google Scholar 

  • Zimmermann, U., Mehlan, D. and Peters, W. (1975) Investigations on the transport function and structure of peritrophic membranes. V. Amino acid analysis and electron microscopic investigations of the peritrophic membranes of the blowfly Calliphora erythrocephala Mg. Comp. Biochem. Physiol., 51B, 181–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Tellam, R.L. (1996). The peritrophic matrix. In: Lehane, M.J., Billingsley, P.F. (eds) Biology of the Insect Midgut. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1519-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1519-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7179-6

  • Online ISBN: 978-94-009-1519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics