MATERIAL IDENTIFICATION USING MIXED NUMERICAL EXPERIMENTAL METHODS

Material Identification Using Mixed Numerical Experimental Methods

Proceedings of the EUROMECH Colloquium held in Kerkrade, The Netherlands, 7-9 April 1997

Edited by

H. Sol Faculty of Applied Sciences, Free University of Brussels, Belgium

and

C.W.J. Oomens Mechanical Engineering Department, Eindhoven University of Technology, The Netherlands

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-13:978-94-010-7158-1 DOI:10.1007/978-94-009-1471-1 e-ISBN-13:978-94-009-1471-1

Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

EUROMECH 357 has been sponsored by the Technology Foundation (STW)

Printed on acid-free paper

All Rights Reserved © 1997 Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 1997

No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

PREFACE

Euromech 357 took place in the nice authentic monastery 'Rolduc' in Kerkrade, Holland. The objective was to bring together researchers to present their latest advancements in the relatively new domain of <u>Material</u> properties identification by <u>Mixed</u> Numerical Experimental <u>Methods (MMM)</u>.

MMM are a modern and increasingly powerful way to determine the values of unknown parameters in a numerical model by observations made on real physical test structures. Starting from the measurement of output values (like displacements, stresses, velocities, vibrations,...) of the real physical test structure, MMM try to update parameters in the numerical model in such a way that the computed observations match the experimental observations. It was shown clearly at the colloquium that the combined use of numerical analysing tools and sophisticated measurement techniques has created an extra degree of freedom for the design of experiments and has led to new approaches for material characterisation. The colloquium was attended by 39 participants coming from 12 different European countries.

We had 23 oral presentations on the different topics of the above mentioned sessions. Each presentation was followed by an intensive discussion. Due to the informal atmosphere and the limited number of participants, the discussions were very lively and fruitful. The opportunity to continue to discuss common problems after dinner in a reserved place was also offered to the Euromech participants. This opportunity and the fact that the monastery was isolated (nobody could escape!) created an excellent platform for discussions and personal contacts.

The second day, a poster session was organised in the evening. The goal of the posters was to serve as a starting point for discussions for those participants who could not give an oral presentation. (The number of presentations was limited in order to create much time for discussions).

As a result of the final discussion the last day, a permanent research group MMM was created for which 16 participants offered active co-operation. The main goals of the Research group MMM are to offer a permanent discussion platform, to write lecture notes on some important common topics and to organise workshops (possibly an other Euromech colloquium) in the future.

The common important scientific conclusion of the colloquium was that the necessary demand for success of MMM is a very accurate numerical model of the experimental set-up and a sufficiently accurate constitutive model to describe the material behaviour. Moreover, the experimental observations have to contain sufficient information to be enable to estimate the parameters. The question is which criterion can be used for this decision and how observability can be improved. Other topics were the weighting of different types and numbers of observations and the way to perform a sensitivity analysis of the experimental set-up. The research group MMM will work out an in depth analysis of these statements.

Hugo Sol, Cees Oomens

CONTENTS

Composites Identification of the complex moduli of thin fibre reinforced polymer	
J. de Visscher, H. Sol, W.P. De Wilde, J. Vantomme	1
Characterization of interphase conditions in composite materials. P.F.M. Meurs, P.J.G. Schreurs, T. Peijs	11
Identification of shear-moduli of microstructures. G. Schiltges, D. Gsell, J. Dual	21
Identification of the dynamic material properties of composite sandwich panels with a mixed numerical/experimental technique. I. Peeters, H.Sol	31
Mixed numerical and experimental stiffness identification methods for soft textile composites. C. Szostkiewics, P. Mailler, P. Hamelin	41
Elasto-Plasticity A simple method for determining the anisotropic properties of cold drawn wire. B. Carlsson	51
Analysis of inhomogeneous displacement fields for the identification of parameters for elasto-plastic deformation laws. UJ. Görke, S. Kretzschmar, R. Kreißig	61
Determination of Parameters in Elasto-Plastic Models of Aluminium. M.H.H. Meuwissen, C.W.J. Oomens, F.P.T.Baaijens, R.Petterson, J.D. Janssen	71
Material parameter identification for large deformation plasticity models. V.V. Toropov, F. Yoshida, E. van der Giessen	81
An inverse approach for the identification of complex material behaviours. O. Ghouati, J.C. Gelin	93
Miscellaneous Discussion on some estimators in mixed numerical/experimental techniques. H. Hua, H. Sol, W.P. De Wilde	103
Stochastic parameter identification in the case of data uncertainties I.N.Trendafilova	109

A combined numerical/experimental method for estimating parameters and structure of viscoelastic constitutive equations using complex flows. J.F.M. Schoonen, F.H.M.Swarties, G.W.M. Peters, F.P.T. Baaijens,	
H.E.H. Meijer	123
Computer aided identification of the temperature dependence of thermal properties	
P.Koc, B Štok	133
Concrete and soil Complex material property identification for cement matrix composites by	
J. Vantomme, J.M. Ndambi, J. de Visscher, H. Sol, W.P. De Wilde	143
Experiments and simulations of interface fracture in concrete. A. Vervuurt, J.G.M. van Mier	153
Inverse analysis of a tunnel excavation problem from displacement and pore water pressure measurements.	163
A. Leuesina, A. Gens	105
Biological Materials Characterization of the in-plane mechanical behaviour of the human skin in vivo.	
W.K.L. van der Voorden, L.F.A. Douven	173
Determination of trabecular bone tissue elastic properties by comparison of experimental and finite element results.	
B. van Rietbergen, J. Kabel, A. Odgaard, R. Huiskes	183
Damage Mixed numerical/experimental method for the identification of damage in	
P.J.P. Bouquet	193
Inverse identification of the internal length scale of quasi-brittle materials using nonlocal damage models.	
J. Carmeliet	203
Parameter identification of the cohesive crack model. G. Bolzon, D.Ghilotti, G. Maier	213
Material property assessment in cracked reinforced concrete by dynamic system identification.	
J.M. Ndambi, J. De Visscher, G. Van Vinckeroy, W.P. De Wilde, J. Vantomme, B. Peeters, M.A. Wahab, G. De Roeck	223

CONTENTS	
Abstracts from the presented posters	233
Elastic moduli identification of a composite tube and an epoxy resin plate using both experimental and numerical modal analysis-sensibility analysis P. Amat, D. Gay	235
Soil identification using data processing of penetration experiments D.B.Balashov	236
Complete elastic characterization of transversely isotropic composite rods by guided structural waves J. Vollmann, M.R. Pfaffinger, J. Dual	237
Identification of material parameters for measurement error models via multiplier methods T. Flöck	238
Fibre/matrix interface fracture toughness identification in single fibre fragmentation test R. Joffe, J. Varna	239
A mixed numerical and experimental approach for the identification of elastic plastic relations in wide range of strains, strain-rates and temperature F.Llorca, A.Juanicotena	240

SCIENTIFIC ADVISORY COMMITTEE

P. Hamelin Université Claude Bernard, France

M.E.H. Hendriks T.N.O.Bouw, Delft, The Netherlands

W. Heylen Katholieke Universiteit Leuven, Belgium

J.D. Janssen Eindhoven University of Technology, The Netherlands

H.E.H. Meijer Eindhoven University of Technology, The Netherlands

> **P. Pedersen** Dept. Solid Mechanics, DTU, Denemarken

W.P. de Wilde Free University of Brussels, Belgium

ORGANIZING COMMITTEE

H.Sol Free University of Brussels, Belgium

C.W.J.Oomens Eindhoven University of Technology, The Netherlands

M. H.W.van Boxtel-Rieken Eindhoven University of Technology, The Netherlands