Skip to main content

Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts

  • Chapter
Sintering Key Papers

Abstract

During sintering in alumina powder compacts, the density has been found to increase linearly with the logarithm of time, and the grain size increases with the one-third power of time. Incorporation of the time dependence of grain size increase into late-stage bulk diffusion sintering models (from Part I )[R. L. Coble, J. Appl. Phys., 32, 787 (1961)] leads to corrected models by which a semilogarithmic behavior is predicted. The presence of density gradients in normally fabricated pellets makes impossible the deduction of whether theoretical density will be achieved from the early stages of the course of densification. Diffusion coefficients calculated from the intermediate and later stages of sintering bear order-of-magnitude agreement with those calculated from the initial-stage sintering measurements in alumina. All diffusion coefficients from sintering data are higher than Kingery’s measured diffusion coefficients for oxygen. It is hypothesized that the sintering process must then be controlled by bulk diffusion of aluminum ions while the oxygen transport takes place along the grain boundaries. In controlling the sinterability of alumina to theoretical density, it appears that magnesia does not ‘inhibit’ discontinuous grain growth, but instead increases the sintering rate such that discontinuous growth nuclei do not have time to form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Clark, J. H. Cannon, and J. White, Trans. Brit. Ceram. Soc. 52, 1 (1953).

    CAS  Google Scholar 

  2. E. B. Allison and P. Murray, Acta Met. 2, 487 (1954).

    Article  CAS  Google Scholar 

  3. G. C. Kuczynski, Trans. AIME 185, 169 (1949).

    Google Scholar 

  4. W. D. Kingery and M. Berg, J. Appl. Phys. 26, 1205 (1955).

    Article  CAS  Google Scholar 

  5. R. L. Coble, J. Am. Ceram. Soc. 41, 55 (1958).

    Article  CAS  Google Scholar 

  6. B. H. Alexander and R. W. Balluffi, J. Metals 2, 1219 (1950).

    Google Scholar 

  7. J. E. Burke, J. Am. Ceram. Soc. 40, 80–85 (1957).

    Article  CAS  Google Scholar 

  8. R. L. Coble, J. Appl. Phys. 32, 787 (1961), preceding paper.

    Article  CAS  Google Scholar 

  9. Y. Iida, J. Am. Ceram. Soc. 41, 397 (1958).

    Article  CAS  Google Scholar 

  10. J. Belle and B. Lustman, WAPD 184, U.S. Atomic Energy Comm. Research Develop. Rept.

    Google Scholar 

  11. I. Cutler, in Kinetics of High Temperature Processes, edited by W.D. Kingery (Technology Press, Cambridge, Massachusetts, and John Wiley & Sons, Inc., New York, 1959).

    Google Scholar 

  12. C. Herring, J. Appl. Phys. 21, 301, 437 (1950).

    Google Scholar 

  13. J. K. MacKenzie and R. Shuttleworth, Proc. Phys. Soc. (London) 62, 360B, 833 (1949).

    Google Scholar 

  14. Y. Oishi and W. D. Kingery, J. Chem. Phys. 33, 480 (1960).

    Article  CAS  Google Scholar 

  15. J. F. Laurent and J. Benard, Compt. rend. 241, 1204 (1955).

    CAS  Google Scholar 

  16. R. L. Coble in Kinetics of High Temperature Processes, edited by W.D. Kingery (Technology Press, Cambridge, Massachusetts, and John Wiley & Sons, Inc., New York, 1959).

    Google Scholar 

  17. P. A. Beck, J. C. Kremer, L. J. Demer, and M. L. Holzworth, Trans. AIME 175, 372 (1948).

    Google Scholar 

  18. J. E. Burke, Trans. AIME 180, 173 (1949).

    Google Scholar 

  19. D. Turnbull, Trans. AIME 191, 661 (1951).

    Google Scholar 

  20. C. S. Smith, Trans. AIME 175, 15 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coble, R.L. (1990). Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts. In: Sōmiya, S., Moriyoshi, Y. (eds) Sintering Key Papers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0741-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0741-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6818-5

  • Online ISBN: 978-94-009-0741-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics