Skip to main content

Schottky Barrier Heights and the Continuum of Gap States

  • Chapter

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 4))

Abstract

Simple physical considerations of local charge neutrality suggest that near a metal-semiconductor interface, the Fermi level in the semiconductor is pinned near an effective gap center, which is simply related to the bulk semiconductor band structure. In this way “canonical” Schottky barrier heights are calculated for several semiconductors. These are in excellent agreement with experiment for interfaces with a variety of metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schottky, Phys. Z. 41, 570 (1940).

    Google Scholar 

  2. J. Bardeen, Phys. Rev. Tl, 717 (1947).

    Google Scholar 

  3. V. Heine, Phys. Rev. A 138, 1689 (1965).

    Article  CAS  Google Scholar 

  4. S. Kurtin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 22, 1433 (1969); also M. Schluter, Phys. Rev. B 17, 5044 (1978).

    Article  CAS  Google Scholar 

  5. J. C. Phillips, J. Vac. Sci. Technol. 11, 947 (1974).

    Article  CAS  Google Scholar 

  6. J. M. Andrews and J. C. Phillips, Phys. Rev. Lett. 35, 56 (1975).

    Article  CAS  Google Scholar 

  7. L. J. Brillson, Phys. Rev. Lett. 40, 260 (1978).

    Article  CAS  Google Scholar 

  8. S. G. Louie and M. L. Cohen, Phys. Rev. B 13, 2461 (1976).

    Article  CAS  Google Scholar 

  9. S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Phys. Rev. B 15, 2154 (1977).

    Article  CAS  Google Scholar 

  10. W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su, and P. W. Chye, Phys. Rev. Lett. 44, 420 (1980); W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979).

    Article  CAS  Google Scholar 

  11. R. E. Allen and J. D. Dow, Phys. Rev. B 25, 1423 (1982).

    Article  CAS  Google Scholar 

  12. O. F. Sankey, R. E. Allen, and J. D. Dow, to be pub¬lished.

    Google Scholar 

  13. M. Schulter, Thin Solid Films J93, 3 (1982).

    Article  Google Scholar 

  14. E. H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1978).

    Google Scholar 

  15. W. Kohn, Phys. Rev. U5, 809 (1959).

    Article  Google Scholar 

  16. J. J. Rehr and W. Kohn, Phys. Rev. B 9, 1981 (1974), and 1£, 448 (1974).

    Article  CAS  Google Scholar 

  17. R. E. Allen, Phys. Rev. B 20, 1454 (1979).

    Article  CAS  Google Scholar 

  18. J. A. Appelbaum and D. R. Hamann, Phys. Rev. B 10, 4973 (1974).

    Article  CAS  Google Scholar 

  19. F. Claro, Phys. Rev. B 17, 699 (A1978).

    Article  Google Scholar 

  20. R. T. Tung, preceding Letter [Phys. Rev. Lett. 52, 461 (1984)]. Perfectly epitaxial interfaces, prepared by novel techniques, may exhibit barrier heights which are quite different from normal interfaces, and which depend strongly on the crystal orientation. For an ideal interface those approximations made here, which were justified by interfacial disorder, break down; it remains to be seen what light the present results may shed on epitaxial M-S interfaces.

    Google Scholar 

  21. E. O. Kane, private communication, and unpublished.

    Google Scholar 

  22. G. A. Baraff and M. Schluter, in Defects and Radiation Effects in Semiconductors—1980, edited by R. R. Hasiguti, The Institute of Physics Conference Series No. 59 (The Institute of Physics, London, 1981), p. 287.

    Google Scholar 

  23. A. Thanailakis and A. Rasul, J. Phvs. C 9, 337 (1976), and references therein.

    CAS  Google Scholar 

  24. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

    Google Scholar 

  25. W. G. Spitzer and C. A. Mead, J. Appl. Phvs. 34, 3061 (1963); B. L. Smith, Ph.D. thesis, Manchester University, 1969 (unpublished) (from Ref. 14 above).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Editorial Jaca Book spa, Milano

About this chapter

Cite this chapter

Tersoff, J. (1990). Schottky Barrier Heights and the Continuum of Gap States. In: Mönch, W. (eds) Electronic Structure of Metal-Semiconductor Contacts. Perspectives in Condensed Matter Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0657-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0657-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6780-5

  • Online ISBN: 978-94-009-0657-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics