Skip to main content

Kinetic Concepts of Heterogeneous Photocatalysis

  • Chapter
  • First Online:
Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids

Abstract

The ABCs of empirical chemical kinetics are highlighted from the scratch. Aspects of dynamics regarding charge carrier trapping and recombination are essential part of this discussion. The effect of imposition of external constrains such as temperature of the reactivity solution, concentration of the subject compound, intensity and wavelength of light on photocatalytic degradation system is emphasised. Because of the crucial position of light intensity in heterogeneous photocatalysis, the principles of operation of important chemical actinometric systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado J, Grieken R van, López-Munõz M-J et al (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A 312:202–212

    Article  CAS  Google Scholar 

  • AraÅ„a J, Nieto JLM, Melián JAH (2004) Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere 55:893–904

    Google Scholar 

  • Augugliaro V, Kisch H, Loddo V et al (2008) Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide 1. Selectivity enhancement by aliphatic alcohols. Appl Catal A 349:182–188

    Article  CAS  Google Scholar 

  • Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  • Bauer C, Boschloo G, Mukhtar E et al (2004) Ultrafast relaxation dynamics of charge carriers relaxation in ZnO nanocrystalline thin films. Chem Phys Lett 387:176–181

    Article  CAS  Google Scholar 

  • Bayarri B, Abellán MN, Giménez J et al (2007) Study of the wavelength effect in the photolysis and heterogeneous photocatalysis. Catal Today 129:231–239

    Article  CAS  Google Scholar 

  • Beranek R, Neumann B, Sakthivel S et al (2007) Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies. Chem Phys 339:11–19

    Article  CAS  Google Scholar 

  • Bhatkhande DS, Kamble SP, Sawant SB et al (2004) Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chem Eng J 102:283–290

    Article  CAS  Google Scholar 

  • Bouzaida I, Ferronato C, Chovelon JM et al (2004) Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach. J Photochem Photobiol A 168:23–30

    Article  CAS  Google Scholar 

  • Chun H, Yizhong W, Hongxiao T (2000) Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere 41:1205–1209

    Article  CAS  Google Scholar 

  • Clayden J, Warren S, Greeves N et al (2001) Organic chemistry. Oxford University Press, New York

    Google Scholar 

  • Colombo DP Jr, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449

    Article  CAS  Google Scholar 

  • Colombo DP Jr, Skinner DE, Cavaleri JJ et al (1995a) Femtosecond spectroscopy of quantum- and bulk-sized semiconductor particles. Paper presented at the 210th ACS National Meeting, American Chemical Society. 20–24 August, Chicago, 1995

    Google Scholar 

  • Colombo DP Jr, Roussel KA, Saeh J et al (1995b) Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters. Chem Phys Lett 232:207–214

    Article  CAS  Google Scholar 

  • Curcó D, Giménez J, Addardak A (2002) Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants. Catal Today 76:177–188

    Article  Google Scholar 

  • Dinga H, Suna H, Shan Y (2005) Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J Photochem Photobiol A 169:101–107

    Article  Google Scholar 

  • Dodd AC, McKinley AJ, Saunders M et al (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanopart Res 8:43–51

    Article  CAS  Google Scholar 

  • Engel T, Reid P (2006) Physical chemistry. Pearson Education, San Fransisco

    Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B 59:81–89

    Article  CAS  Google Scholar 

  • Fernández E, Figuera JM, Tobar A (1979) Use of potassium ferrioxalate actinometer below 254 nm. J Photochem 11:69–71

    Article  Google Scholar 

  • Friesen DA, Morello L, Headleya JV et al (2000) Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts. J Photochem Photobiol A 133:213–220

    Article  CAS  Google Scholar 

  • Fu X, Clark LA, Zeltner WA et al (1996) Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J Photochem Photobiol A 97:181–186

    Article  CAS  Google Scholar 

  • Gaya UI (2011) Comparative analysis of ZnO−catalyzed photo−oxidation of p−chlorophenols. Eur J Chem 2:163–167

    Article  CAS  Google Scholar 

  • Goldstein S, Rabani J (2008) The ferrioxalate and iodide–iodate actinometers in the UV region. J Photochem Photobiol A 193:50–55

    Article  CAS  Google Scholar 

  • Grätzel M, Frank AJ (1982) Interfacial electron-transfer reactions in colloldal semiconductor dispersions. Kinetic Analysis. J Phys Chem 86:2964–2967

    Article  Google Scholar 

  • Hatchard CG, Parker CA (1956) A newsensitive chemical actinometer. II. Potassium, ferric oxalate as a standard chemical actinometer. Proc R Soc London Ser A 235:518–536

    Article  CAS  Google Scholar 

  • Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Huqul M, Ercaq E, Apak R (2002) Kinetic studies on UV-photodegradation of some chlorophenols using TiO2 catalyst. J Environ Sci A: Tox Hazard Subst Environ Eng 37(3):365–83

    Article  Google Scholar 

  • Jankowski JJ, Kieber DJ, Mopper K (1999) Nitrate and nitrite ultraviolet actinometers. Photochem Photobiol 70:319–328

    Article  CAS  Google Scholar 

  • Karunakaran C, Senthilvelan S (2005) Photooxidation of aniline on alumina with sunlight and artificial UV light. Catal Commun 6:159–165

    Article  CAS  Google Scholar 

  • Klabunde KJ, Richards RM (eds) (2009) Nanoscale materials in chemistry. Wiley, New Jersey

    Book  Google Scholar 

  • Kormann C, Bahnemann DW, Hoffman MR (1991) Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500

    Article  CAS  Google Scholar 

  • Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic decomposition of saturated carboxylic acids on TiO2 powder decarboxylative route to alkanes. J Am Chem Soc 100(19):5958

    Article  Google Scholar 

  • Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry (IUPAC technical report). Organic and biomolecular chemistry division, subcommittee on photochemistry, International Union of Pure and Applied Chemistry. Pure Appl Chem 76:2105–2146

    Article  CAS  Google Scholar 

  • Kumar KV, Porkodi K, Selvaganapathi A (2007) Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes Pigm 75:246–249

    Article  CAS  Google Scholar 

  • Lee J, Kim J, Choi W (2007) Ferrioxalate-polyoxometalate system as a new chemical actinometer. Environ Sci Technol 41:5433–5438

    Article  CAS  Google Scholar 

  • Leng WH, Zhang Z, Zhang JQ (2003) Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600 °C. J Mol Catal A: Chem 206:239–252

    Article  CAS  Google Scholar 

  • Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Ohashi N et al (2005) Morphological reform of ZnO particles induced by coupling with MOx (M = V, W, Ce) and the effects on photocatalytic activity. Thin Solid Films 486:20–23

    Article  CAS  Google Scholar 

  • McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A 182:43–51

    Article  CAS  Google Scholar 

  • Mehrotra K, Yablonsky GS, Ray AK (2003) Kinetic studies of photocatalytic degradation in a TiO2 Slurry System: Distinguishing working regimes and determining rate dependences. Ind Eng Chem Res 42:2273–2281

    Article  CAS  Google Scholar 

  • Minero C, Vione D (2006) A quantitative evaluation of the photocatalytic performance of TiO2 slurries. Appl Catal B 67:257–269

    Article  CAS  Google Scholar 

  • Montalti M, Credi A, Prodi L et al (2006) Handbook of Photochemistry 3rd edn. Taylor and Francis, USA

    Book  Google Scholar 

  • Mortimer RG (ed) (2008) Physical chemistry. Elsevier Academic Press, Canada

    Google Scholar 

  • Muneer M, Theurich J, Bahnemann D (2001) Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate. J Photochem Photobiol A 143:213–219

    Article  CAS  Google Scholar 

  • Muradov NZ, Raissi AT, Muzzey D et al (1996) Selective photocatalytic destruction of VOCs. Sol Energy 56(5):445–453

    Article  CAS  Google Scholar 

  • Puma GL, Yue PL (2002) Effect of the radiation wavelength on the rate of photocatalytic oxidation of organic pollutants. Ind Eng Chem Res 41:5594–5600

    Article  Google Scholar 

  • Qamar M, Muneer M, Bahnemann D (2006) Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozide in aqueous suspensions of titanium dioxide. J Environ Manage 80:99–106

    Article  CAS  Google Scholar 

  • Rothenberger G, Moser J, Gratzel M et al (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059

    Article  CAS  Google Scholar 

  • Salinaro A, Emeline AV, Zhao J et al (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: experimental determination of quantum yield. Pure Appl Chem 71:321–335

    Article  CAS  Google Scholar 

  • San N, HatipoÄŸlu A, Koçtürk G et al (2002) Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. J Photochem Photobiol A 146:189–197

    Article  CAS  Google Scholar 

  • Santos AR, Ballardini R, Belser P et al (2009) Photochemical investigation of a photochromic diarylethene compound that can be used as a wide range actinometer. Photochem Photobiol Sci 8:1734–1742

    Article  CAS  Google Scholar 

  • Saquib M, Muneer M (2003) TiO2-mediated photocatalytic degradation of a triphenyl methane dye (gentian violet), in aqueous suspensions. Dyes Pigm 56:37–49

    Article  CAS  Google Scholar 

  • Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A 104:1–12

    Article  CAS  Google Scholar 

  • Serpone N, Lawless D, Khairutdinov R et al (1995) Subnanosecond relaxation dynamics in TiO2 colloidal sols (Particle sizes R, = 1.0- 13.4 nm). Relevance to heterogeneous photocatalysis. J Phys Chem 99:16655–16661

    Article  CAS  Google Scholar 

  • Serpone N, Salinaro A (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested protocol (Technical Report). Pure Appl Chem 71:303–320

    Article  CAS  Google Scholar 

  • Serpone N, Sauve G, Koch R et al (1996) Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ζr. J Photochem Photobiol A 94:191–203

    Article  CAS  Google Scholar 

  • Silva CG, Wang W, Faria JL (2006) Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. J Photochem Photobiol A 181:314–324

    Article  CAS  Google Scholar 

  • Soares ET, Lansarin MA, Moro CC (2001) A study of process variables for the photocatalytic degradation of Rhodamine B. Braz J Chem Eng 24(01):29–36

    Article  Google Scholar 

  • Stylidi M, Kondarides DI, Verykios XE (2004) Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl Catal B 47:189–201

    Article  CAS  Google Scholar 

  • Tahiri H, Serpone N, Le vanMR (1996) Application of concept of relative photonic efficiencies and characterization of a new titania photocatalyst designed for environmental remediation. J Photochem Photobiol A 93:199–203

    Article  CAS  Google Scholar 

  • Tariq MA, Faisal M, Muneer M et al (2007) Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide. J Mol Catal A: Chem 265:231–236

    Article  CAS  Google Scholar 

  • Theurich J, Lindner M, Bahnemann DW (1996) Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study. Langmuir 12:6368–6376

    Article  CAS  Google Scholar 

  • Tunesi S, Anderson MA (1978) Photocatalysis of 3,4-DCB in TiO2 aqueous suspension; Effects of temperature and light intensity; CIR-FTIR interfacial analysis. Chemosphere 16(7):1447–1456

    Article  Google Scholar 

  • Vinodgopal K, Bedja I, Kamat PV (1996) Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater 8:2180–2187

    Article  CAS  Google Scholar 

  • Vorontsov AV, Stoyanova IV, Kozlov DV et al (2000) Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J Catal 189:360–369

    Article  CAS  Google Scholar 

  • Wang C-M, Heller A, Gerischer H (1992) Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photo-assisted oxidation of organic compounds. J Am Chem Soc 114:5230–5234

    Article  CAS  Google Scholar 

  • Wang XH, Li JG, Kamiyama H et al (2006) Wavelength-Sensitive Photocatalytic degradation of methyl orange in aqueous suspension over Iron(III)-doped TiO2 Nanopowders under UV and visible light irradiation. J Phys Chem B 110:6804–6809

    Article  CAS  Google Scholar 

  • Wilke K, Breuer HD (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A 121:49–53

    Article  CAS  Google Scholar 

  • Wright MR (2006) An Introduction to chemical kinetics. Wiley, England

    Google Scholar 

  • Yang L, Liu Z (2007) Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energ Convers Manage 48:882–889

    Article  CAS  Google Scholar 

  • Yang L, Yu LE, Ray MB (2009) Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ Sci Technol 43:460–465

    Article  CAS  Google Scholar 

  • Yang X, Tamai N (2001) How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Phys Chem Chem Phys 3:3393–3398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Ibrahim Gaya .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaya, U. (2014). Kinetic Concepts of Heterogeneous Photocatalysis. In: Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7775-0_2

Download citation

Publish with us

Policies and ethics