Skip to main content

Bridging Conventional Breeding and Genomics for A More Sustainable Wheat Production

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Conventional breeding has a long history of success, while the field of genomics and its applications offer new ways to more efficiently breed new cultivars. In this chapter, using wheat (Triticum spp.) as an example, we review the current understanding of wheat breeding and two of its key aspects: The use and creation of genetic diversity (intercrossing elite lines or crossing elite lines with unadapted lines or wild species; creating mutations; and inserting transgenes), and the ability to phenotypically or genetically select for useful combinations of alleles to create improved lines. The strengths of conventional breeding and genomic –assisted breeding are described, as are their limitations, and how a modern breeding program will adapt and integrate new breeding tools with proven methods. The introduction of new alleles into a population will require estimates of their breeding values and epistasis before they can be effectively selected using genomic selection. Similarly, the importance of genotype– by environment interactions will require extensive field testing and more sophisticating genomic selection models to identify lines for the target set of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Doss AA, Elshafei AA, Moustafa KA et al (2011) Comparative analysis of diversity based on morph-agronomic traits and molecular markers in durum wheat under heat stress. Afr J Biotech 10:3671–3681

    CAS  Google Scholar 

  • Almanza-Pinzon MI, Warburton ML, Fox PN, Khairallah M (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86

    CAS  Google Scholar 

  • Asins MJ, Carbonell EA (1988) Distribution of variability in durum wheat world collection. Theor Appl Genet 77:287–294

    Google Scholar 

  • Asoro FG, Newell MA, Beavis WD et al (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144

    Google Scholar 

  • Baenziger PS, DePauw RM (2009) Wheat breeding: procedures and strategies. In: Carver BF (ed) Wheat: science and trade. Wiley-Blackwell Publishing, Ames, pp 275–308

    Google Scholar 

  • Baenziger PS, McMaster GS, Wilhelm WW et al (2004) Putting genes into genetic coefficients. Field Crop Res 90:133–143

    Google Scholar 

  • Baenziger PS, Beecher B, Graybosch RA et al (2006) Registration of ‘Infinity CL’ wheat. Crop Sci 46:975–977

    Google Scholar 

  • Baenziger PS, Russell WK, Graef GL, Campbell BT (2006b) Improving lives: 50 years of crop breeding, genetics and cytology (C-1). Crop Sci 46:2230–2244

    Google Scholar 

  • Baenziger PS, Salah I, Little RS et al (2011) Structuring an efficient organic wheat breeding program. Sustainability 3(8):1190–1206

    Google Scholar 

  • Bakhsh A, Mengistu N, Baenziger PS, Dweikat I, Wegulo SN, Rose D, Bai G, Eskridge KM (2013) Effect of Fusarium head blight (FHB) resistance gene Fhbl on agrnomic and end-use quality traits of hard red witner wheat. Crop Sci..53:793-801.

    Google Scholar 

  • Baker RJ (1984) Quantitative genetic principles in plant breeding. In: Gustafson JP (ed) Gene manipulation in plant improvement I. Plenum Press, New York, pp 147–176

    Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    CAS  Google Scholar 

  • Bennypaul HS, Mutti IS, Rustgi S, Kumar N, Okubara, PA, and Gill KS (2011) Virus-induced gene silencing (VIaS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct. Integr Genomics 12:143-158.

    Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Google Scholar 

  • Bhat PR, Lukaszewski A, Cui XP et al (2007) Mapping translocation breakpoints using a wheat microarray. Nucleic Acids Res 35:2936–2943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bos I (1983) The optimal number of replications when testing lines or families on a fixed number of plots. Euphytica 32:311–318

    Google Scholar 

  • Botticella E, Sestili F, Hernandez-Lopez A et al (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun HJ, Payne TS, Morgounov AI et al (1998) The challenge: one billion tons of wheat by 2020. In: Proc of the Ninth Int Wheat Genet Symp, Saskatoon, Saskatchewan, Canada, 2–7 August 1998, Canada, pp 33–40

    Google Scholar 

  • Brown-Guedira GL, Thompson JA, Nelson RL, Warburton ML (2000) Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci 40:815–823

    CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    CAS  Google Scholar 

  • Burgueno J, Crossa J, Cotes JM et al (2011) Prediction assessment of linear mixed models for multi-environment trials. Crop Sci 51:944–954

    Google Scholar 

  • Calus MPL (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157–164

    CAS  PubMed  Google Scholar 

  • Calus MPL, Veerkamp RF (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    CAS  PubMed  Google Scholar 

  • Carvalho A, Lima-Brito J, Macas B, Guedes-Pinto H (2011) Genetic diversity in old Portuguese durum wheat cultivars assessed by retrotransposon-based markers. Biochem Genet 47:276–294

    Google Scholar 

  • Chao S, Zhang W, Akhunov E et al (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum Aestivum L.) cultivars. Mol Breed 23:23–33

    CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J et al (2010) Population and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.) RID A-4969-2008 RID C-5600-2011. BMC Genom 11:727

    CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Google Scholar 

  • Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red and winter wheat regions on the United States. Proc Natl Acad Sci 83:5583–5586

    CAS  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Cornelius PL et al (2006) Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46:1722–1733

    Google Scholar 

  • Crossa J, de los CG, Perez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    CAS  PubMed  Google Scholar 

  • Damania AB, Porceddu E, Jakson MT (1983) A rapid method for the evaluation of variation in germplasm collections of cereals using polyacrylamide gel electrophoresis. Euphytica 32:877–883

    Google Scholar 

  • de LCamposG, Gianola D, Allison DB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 11:880–886

    Google Scholar 

  • DePauw RM, Knox RE, Clarke FR et al (2007) Shifting undesirable correlations. Euphytica 157:409–415

    Google Scholar 

  • de Roos APW, Hayes BJ, Goddard ME (2009) Reliability of genomic predictions across multiple populations. Genetics 183:1545–1553

    CAS  PubMed  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163

    Google Scholar 

  • Eathington S, Dudley J, Rufener G (1997) Usefulness of marker-QTL associations in early generation selection. Crop Sci 37:1686–1693

    Google Scholar 

  • Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci 43:710–717

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Interlocution to Quantitative Genetics, 4th edn. Longman and Company, Essex

    Google Scholar 

  • Fehr WR (1987) Principles of cultivar development: theory and technique. Macmillan, New York

    Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Rev 3:329–341

    CAS  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975

    Google Scholar 

  • Frisch M, Melchinger AE (2001a) Marker-assisted backcrossing for introgression of a recessive gene. Crop Sci 41:1485–1494

    Google Scholar 

  • Frisch M, Melchinger AE (2001b) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41:1716–1725

    Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotech J 8:655–677

    CAS  Google Scholar 

  • Fu D, Uauy, C, Blechel A, Dubocovsky J (2007) RNA interference for wheat functional gene analysis. Transgenic Res. 16: 689-701.

    Google Scholar 

  • Fuentes RG, Mickelson HR, Busch RH et al (2005) Resource allocation and cultivar stability in breeding for Fusarium head blight resistance in spring wheat. Crop Sci 45:1965–1972

    CAS  Google Scholar 

  • Fufa H, Baenziger PS, Beecher BS et al (2005) Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133–146

    CAS  Google Scholar 

  • Gaut B, Long A (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    CAS  PubMed  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Google Scholar 

  • Guzman C, Caballero L, Alvarez JB (2011) Molecular characterization of the Wx-B1 allelic variants identified in cultivated emmer wheat and comparison with those of durum wheat. Mol Breed 28:402–411

    Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    CAS  PubMed  Google Scholar 

  • Habier D, Tetens J, Seefried F et al (2010) The impact of genetic relationship information on genomic breeding values in german holstein cattle. Genet Sel Evol 42:5

    PubMed Central  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding. 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Hamblin MT, Close TJ, Bhat PR et al (2010) Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 50:556–566

    CAS  Google Scholar 

  • Hao C, Wang L, Ge H et al (2011) Genetic diversity and linkage disequilibrium in chinese bread wheat (Triticum Aestivum L. ) Revealed by SSR Markers. PLoS ONE 6(2):e17279. doi:10.1371/journal.pone.0017279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AC et al (2009) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet, Sel, Evol: GSE 41:51

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations (Second Edition). Jones and Bartlett Publishers, Sudbury, MA, USA, p. 553

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011a) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Google Scholar 

  • Heffner EL, Jannink JH, Iwata E et al (2011b) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Google Scholar 

  • Hospital F, Moreau L, Lacoudre F et al (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su X et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci 99:8133–8138

    CAS  PubMed  Google Scholar 

  • Huehn M (1996) Optimum number of crosses and progeny per cross in breeding self-fertilizing crops. I. General approach and first numerical results. Euphytica 91:365–374

    Google Scholar 

  • Jaccard P (1908) Nouvelles researches sur la distribution florale. (Translated as “New researches on floral distribution.”) Bull Soc Vaud Sci Natl 44:223–270

    Google Scholar 

  • Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics and. Proteomics 9:166–177

    CAS  Google Scholar 

  • Johns MA, Skrotch PW, Neinhuis J et al (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37:605–613

    Google Scholar 

  • Johnson GR (2004) Marker-assisted selection. Plant Breed Rev 24:293–309

    Google Scholar 

  • Karakas O, Gurel F, Uncuoglu AA (2010) Exploiting a wheat EST database to assess genetic diversity. Genet Mol Biol 33:719–730

    CAS  PubMed  Google Scholar 

  • Khalighi M, Arzani A, Poursiahbidi MA (2008) Assessment of genetic diversity in Triticum spp. and Aegilops spp. using AFLP markers. Afr J Biotech 7:546–552

    CAS  Google Scholar 

  • Knox RE, Clarke FR (2007) Molecular breeding approaches for enhanced resistance against fungal pathogens. In: Punja ZK, De Boer S, Sanfacon H (ed) Biotechnology and plant disease management. CAB Int, Oxfordshire. pp 321–357

    Google Scholar 

  • Kramer CC, Polewicz H, Osborne TC (2009) Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica Napus L. Mol Breed 24:419–431

    Google Scholar 

  • Kumar R, Jaiswal SK, Vishwakarma MKetal (2011) Assessment of genetic diversity and its usefulness for varietal identification in Indian Elite varieties of wheat (Triticum Aestivum L.) using RAPD markers. Asian J Biotech 3:460–469

    CAS  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucelopide polymorphism markets lined to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728

    CAS  PubMed  Google Scholar 

  • Liu S, Pumphrey MO, Gill BS et al (2008) Toward positonal cloning of Fhb1, a major QTL for Fusarium head blight in wheat. Cereal Res Comm 36 (Suppl B):195–201

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Google Scholar 

  • Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    PubMed  Google Scholar 

  • Mandoulakaniab BA, Shahnejat-Bushehric A-A, Tabatabaeid BES et al (2010) Genetic diversity among wheat cultivars using molecular markers. J Crop Imp 24:299–309

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING). Plant Physiol 123:439–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melchinger AE (1993) Use of RFLP markers for analyses of genetic relationships among breeding materials and prediction of hybrid performance. In: Buxton DR (ed) Proc of the Int Crop Sci Congress, 1st, Ames, IA. July 1992. CSSA, Madison, WI. pp 621–628

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41

    Google Scholar 

  • Meuwissen T, Goddard M (2010) Accurate prediction of genetic values for complex traits by whole-genome re-sequencing. Genetics 185:623–338

    CAS  PubMed  Google Scholar 

  • Miedaner T, Wurschum T, Maurer HP et al (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248

    Google Scholar 

  • Mohammadi SA, Khodarahmi M, Jamalirad S, Jalal Kamali MR (2008) Genetic diversity in a collection of old and new bread wheat cultivars from Iran as revealed by simple sequence repeat-based analysis. Annals Appl Biol 154:67–76

    Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for the 21st century crop improvement. Plant Physiol 147:969–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moser G, Tier B, Crump RE et al (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel E 41:56

    Google Scholar 

  • Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355

    CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Rosas VB, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aeqilops squarrosa auct Non L.) in synthetic hexaploid wheats (T turgidum L s lat X T taschhii; (2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop E 43:129–134

    Google Scholar 

  • Murphy JP, Cox TS, Rodgers DM (1986) Cluster analysis of red winter wheat cultivars based upon coefficients of parentage. Crop Sci 26:672–676

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Multi Proc Natl Acad Sci (USA) 70:3321–3323

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci (USA) 76:5269–5273

    Google Scholar 

  • Newhouse KE, Smith WA, Starrett MA et al (1992) Tolerance to imidazolinone herbicides in wheat. Plant Physiol 100:882–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paull JG, Chalmers KJ, Karakousis A et al (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446

    CAS  Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication, evolution, and genetics and genomics in wheat. Mol Breed 28:281–301

    CAS  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genome-wide selection in maize. Crop Sci 49:1165–1176

    Google Scholar 

  • Podlich D, Winkler C, Cooper M (2004) Mapping as you go: An effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat liens developed from breeding populations. Crop Sci 47:200–206

    CAS  Google Scholar 

  • Rasmussen DC, Phillips RL (1997) Plant Breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303–310

    Google Scholar 

  • Robertson DS (1985) A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol 117:1–10

    CAS  Google Scholar 

  • Saatchi M, McClure MC, McKay SD et al (2011) Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genet Sel E 43:40

    Google Scholar 

  • Salameh A, Buerstmayr M, Steiner B et al (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield, and quality traits. Mol Breed 28:485–494

    Google Scholar 

  • Scofield S, Nelson R (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiology 149:152-157.

    Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Ann Rev Genet 10:31–51

    CAS  PubMed  Google Scholar 

  • Sears ER (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Google Scholar 

  • Shands RG (1946) An apparent linkage of resistance to loose smut and stem rust in barley. Agron. J. 38: 690-692.

    Google Scholar 

  • Smith JSC (1984) Genetic variability within U.S. hybrid maize: multivariate analysis of isozyme data. Crop Sci 24:1041–1046

    CAS  Google Scholar 

  • Sneep J (1977) Selection for yield in early generations of self-fertilizing crops. Euphytica 26:27–30

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2009) Reducing dimensionality for prediction of genome-wide breeding values. Genet Sel Evol 41

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum Aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Souza E, Sorrells ME (1989) Pedigree analysis of North American oat cultivars released from 1951–1985. Crop Sci 29:595–601

    Google Scholar 

  • Steinhoff J, Liu W, Maurer HP et al (2011) Multiple-line cross quantitative trait locus mapping in European elite maize. Crop Sci 51:2505–2516

    Google Scholar 

  • Sun X, Peng T, Mumm RH (2011) The role and basics of computer simulation in support of critical decisions in plant breeding. Mol Breed 28:421–436

    Google Scholar 

  • Thompson JA, Nelson RL (1998) Utilization of diverse germplasm for soybean yield improvement. Crop Sci 38:1362–1368

    Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheats. BMC Plant Biol 9:115

    PubMed Central  PubMed  Google Scholar 

  • Van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci 37:981–988

    Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR et al (2009) Invited review: reliability of genomic predictions for north American Holstein bulls. J Dairy Sci 92:16–24

    CAS  PubMed  Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer Associates, Inc, Suderland, Massachusetts

    Google Scholar 

  • William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319

    Google Scholar 

  • Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    CAS  PubMed  Google Scholar 

  • Zeller FJ, Hsam SKL (1984) Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Kyoto. pp 161–173

    Google Scholar 

  • Zhang L, Liu D, Guo X et al (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Liu W et al (2011) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet. doi:1007/s00122-011-1745-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baenziger, P., Bakhsh, A., Lorenz, A., Walia, H. (2014). Bridging Conventional Breeding and Genomics for A More Sustainable Wheat Production. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_7

Download citation

Publish with us

Policies and ethics