Skip to main content

Dissection of Potato Complex Traits by Linkage and Association Genetics as Basis for Developing Molecular Diagnostics in Breeding Programs

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Most characters relevant for the development of commercial potato varieties are complex, meaning that they are controlled by multiple genetic and environmental factors. Over the past 20 years, potato complex traits have been dissected by linkage mapping in quantitative trait loci (QTL) using DNA-based markers. QTL mapping was performed in genetically diverse diploid and in few tetraploid bi-parental progeny. The integration of various QTL maps revealed regions in the potato genome where genes controlling complex traits are located. This in combination with mapping genes known to functionally contribute to a given phenotype identified candidate loci for complex traits. More recently, association mapping entered the stage and resulted in the identification of the first markers diagnostic for potato complex traits in populations of tetraploid cultivars related by descent. Association mapping based on DNA polymorphisms in functional and positional candidate genes identified loci that might be causal for natural variation of resistance to late blight or tuber quality traits such as processing quality and bruising resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht T, Koch A, Lode A et al (2001) Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213:602–613

    CAS  PubMed  Google Scholar 

  • Alcázar R, García AV, Parker JE, Reymond M (2009) Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci U S A 106:334–339

    PubMed Central  PubMed  Google Scholar 

  • Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60:676–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alyokhin A, Baker M, Mota-Sanchez D et al (2008) Colorado potato beetle resistance to insecticides. Am J Pot Res 85:395–413

    Google Scholar 

  • Arnqvist L, Dutta PC, Jonsson L, Sitbon F (2003) Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a Type 1 sterol methyltransferase cDNA. Plant Physiol 131:1792–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baayen R, Cochius G, Hendriks H et al (2006) History of potato wart disease in Europe—a proposal for harmonisation in defining pathotypes. Eur J Plant Pathol 116:21–31

    Google Scholar 

  • Bachem CWB, Speckmann G-J, van der Linde PCG et al (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Nat Biotech 12:1101–1105

    CAS  Google Scholar 

  • Bae J, Halterman D, Jansky S (2008) Development of a molecular marker associated with Verticillium wilt resistance in diploid interspecific potato hybrids. Mol Breed 22:61–69

    CAS  Google Scholar 

  • Bagnaresi P, Moschella A, Beretta O et al (2008) Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genom 9:176

    Google Scholar 

  • Ballvora A, Ercolano MR, Weiss J et al (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371

    CAS  PubMed  Google Scholar 

  • Ballvora A, Flath K, Lübeck J et al (2011) Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18. Theor Appl Genet 123:1281–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beketova M, Drobyazina P, Khavkin E (2006) The R1 gene for late blight resistance in early and late maturing potato cultivars. Russian J Plant Physiol 53:384–389

    CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS et al (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird AR, Brown IL, Topping DL (2000) Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol. 1:25–37

    CAS  PubMed  Google Scholar 

  • Boccalandro HE, Ploschuk EL, Yanovsky MJ et al (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1993) A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet 86:481–491

    CAS  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Pineda O, Tanksley SD (1994) QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet 87:973–987

    CAS  PubMed  Google Scholar 

  • Bormann CA, Rickert AM, Ruiz RA et al (2004) Tagging quantitative trait loci for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene markers. Mol Plant Microbe Interact 17:1126–1138

    CAS  PubMed  Google Scholar 

  • Bradshaw J, Mackay G (1994) Potato genetics. CAB International, Wallingford, UK

    Google Scholar 

  • Bradshaw JE, Hackett CA, Meyer RC et al (1998) Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum subsp. tuberosum) with a view to marker-assisted selection. Theor Appl Genet 97:202–210

    Google Scholar 

  • Bradshaw JE, Pande B, Bryan GJ et al (2004) Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics 168:983–995

    CAS  PubMed  Google Scholar 

  • Bradshaw JE, Hackett CA, Lowe R et al (2006) Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 113:943–951

    CAS  PubMed  Google Scholar 

  • Bradshaw JE, Hackett CA, Pande B et al (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211

    PubMed  Google Scholar 

  • Brown C, Edwards C, Yang C, Dean B (1993) Orange flesh trait in potato: inheritance and carotenoid content. J Amer Soc Hort Sci 118:145–150

    CAS  Google Scholar 

  • Brown C, Kim T, Ganga Z et al (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372

    CAS  Google Scholar 

  • Brugmans B, Hutten R, Rookmaker A et al (2006) Exploitation of a marker dense linkage map of potato for positional cloning of a wart disease resistance gene. Theor Appl Genet 112:269–277

    CAS  PubMed  Google Scholar 

  • Bryan G, McLean K, Bradshaw J et al (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105:68–77

    CAS  PubMed  Google Scholar 

  • Bryan G, McLean K, Pande B et al (2004) Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Mol Breed 14:105–116

    CAS  Google Scholar 

  • Caromel B, Mugniéry D, Lefebvre V et al (2003) Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106:1517–1523

    CAS  PubMed  Google Scholar 

  • Caromel B, Mugniéry D, Kerlan M-C et al (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant Microbe Interact 18:1186–1194

    CAS  PubMed  Google Scholar 

  • Celis-Gamboa C, Struik PC, Jacobsen E, Visser RGF (2003) Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Ann Appl Biol 143:175–186

    Google Scholar 

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    CAS  Google Scholar 

  • Clark AG, Boerwinkle E, Hixson J, Sing CF (2005) Determinants of the success of whole-genome association testing. Genome Res 15:1463–1467

    CAS  PubMed  Google Scholar 

  • Collins A, Milbourne D, Ramsay L et al (1999) QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed 5:387–398

    CAS  Google Scholar 

  • Corsini D, Pavek J, Dean B (1992) Differences in free and protein-bound tyrosine among potato genotypes and the relationship to internal blackspot resistance. Am J Pot Res 69:423–435

    CAS  Google Scholar 

  • Costanzo S, Simko I, Christ BJ, Haynes KG (2005) QTL analysis of late blight resistance in a diploid potato family of Solanum phureja × S. stenotomum. Theor Appl Genet 111:609–617

    CAS  PubMed  Google Scholar 

  • D’hoop BB, Paulo M-J, Mank R et al (2008) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161:47–60

    Google Scholar 

  • D’hoop B, Paulo M, Kowitwanich K et al (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121:1151–1170

    PubMed Central  PubMed  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H, Todd D (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    CAS  Google Scholar 

  • Dalianis C, Plaisted R, Peterson L (1966) Selection for freedom from after cooking darkening in a potato breeding program. Am J Pot Res 43:207–215

    Google Scholar 

  • Danan S, Chauvin J-E, Caromel B et al (2009) Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theor Appl Genet 119:705–719

    CAS  PubMed  Google Scholar 

  • Danan S, Veyrieras J-B, Lefebvre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16

    PubMed Central  PubMed  Google Scholar 

  • De Jong H (1987) Inheritance of pigmented tuber flesh in cultivated diploid potatoes. Am Potato J 64:337–343

    Google Scholar 

  • De Jong H, Burns V (1993) Inheritance of tuber shape in cultivated diploid potatoes. Am J Pot Res 70:267–284

    Google Scholar 

  • De Maine MJ, Bain H, Joyce JAL (1988) Changes in the total tuber glycoalkaloid content of potato cultivars on exposure to light. J Agric Sci Camb 111:57–58

    Google Scholar 

  • Douches DS, Freyre R (1994) Identification of genetic factors influencing chip color in diploid potato (Solanum spp). Am Potato J 71:581–590

    Google Scholar 

  • Draffehn AM, Meller S, Li L, Gebhardt C (2010) Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol 10:271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Draffehn AM, Durek P, Nunes-Nesi A, Stich B, Fernie AR, Gebhardt C (2012) Tapping natural variation at functional level reveals allele specific molecular characteristics of potato invertase Pain-1. Plant Cell Environ 35:2143–2154

    Google Scholar 

  • Ducreux LJ, Morris WL, Prosser IM et al (2008) Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes. J Exp Bot 59:4219–4231

    CAS  PubMed  Google Scholar 

  • El-Shimi NM (1993) Control of enzymatic browning in apple slices by using ascorbic acid under different conditions. Plant Foods Hum Nutr 43:71–76

    CAS  PubMed  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht, pp 97–119

    Google Scholar 

  • Evans K, Trudgill DL (1992) Pest aspects of potato production. Part 1. The nematode pests of potato In: Harris P (ed) The potato crop, 2nd edn. Chapman and Hall, London, pp 438–475

    Google Scholar 

  • Ewing EE, Struik PC (1992) Tuber formation in potato: induction, initiation and growth. Hortic Rev 14:89–197

    Google Scholar 

  • Ewing EE, Å imko I, Smart CD et al (2000) Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Mol Breed 6:25–36

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernie A, Tauberger E, Lytovchenko A et al (2002) Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism. Planta 214:510–520

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    CAS  PubMed  Google Scholar 

  • Flis B, Hermig J, Strzelczyk-Zyta D et al (2005) The Ry-f(sto) gene from Solanum stoloniferum for extreme resistant to Potato Virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122(718) in PVY resistant potato cultivars. Mol Breed 15:95–101

    CAS  Google Scholar 

  • Freyre R, Douches DS (1994) Development of a model for marker-assisted selection of specific gravity in diploid potato across environments. Crop Sci 34:1361–1368

    Google Scholar 

  • Freyre R, Warnke S, Sosinski B, Douches DS (1994) Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanum spp.). Theor Appl Genet 89:474–480

    CAS  PubMed  Google Scholar 

  • Fridman E, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 131:603–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45:1523–1540

    Google Scholar 

  • Fruwirth C (1912) Zur Züchtung der Kartoffel. Deutsche Landw Presse 39:565–567

    Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E et al (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19:711–724

    CAS  PubMed  Google Scholar 

  • Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    CAS  PubMed  Google Scholar 

  • Gebhardt C, Ritter E, Debener T et al (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75

    CAS  PubMed  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B et al (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    CAS  Google Scholar 

  • Gebhardt C, Menendez C, Chen X et al (2005) Genomic approaches for the improvement of tuber quality traits in potato. Acta Hort 684:85–92

    CAS  Google Scholar 

  • Ghislain M, Trognitz B, del R. Herrera M et al (2001) Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and S. tuberosum grown under short-day conditions. Theor Appl Genet 103:433–442

    CAS  Google Scholar 

  • Ginzberg I, Tokuhisa J, Veilleux R (2009) Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res 52:1–15

    CAS  Google Scholar 

  • Gould WA (1999) Potato production, processing and technology. CTI Publications, Timonium, MD

    Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    CAS  PubMed  Google Scholar 

  • Hackett CA, Bradshaw JE, McNicol JW (2001) Interval mapping of quantitative trait loci in autotetraploid species. Genetics 159:1819–1832

    CAS  PubMed  Google Scholar 

  • Hackett CA, Pande B, Bryan GJ (2003) Constructing linkage maps in autotetraploid species using simulated annealing. Theor Appl Genet 106:1107–1115

    CAS  PubMed  Google Scholar 

  • Hackett CA, Milne I, Bradshaw JE, Luo Z (2007) TetraploidMap for windows: linkage map construction and QTL mapping in autotetraploid species. J Hered 98:727–729

    CAS  PubMed  Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367

    PubMed Central  PubMed  Google Scholar 

  • Hamilton J, Hansey C, Whitty B et al (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genom 12:302

    CAS  Google Scholar 

  • Hedley PE, Machray GC, Davies HV et al (1993) cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol 22:917–922

    CAS  PubMed  Google Scholar 

  • Hedley PE, Machray GC, Davies HV et al (1994) Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene 145:211–214

    CAS  PubMed  Google Scholar 

  • Hehl R, Faurie E, Hesselbach J et al (1999) TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor Appl Genet 98:379–386

    CAS  Google Scholar 

  • Henze RE (1956) Inhibition of enzymatic browning of chlorogenic acid solutions with cysteine and glutathione. Science 123:1174–1175

    CAS  PubMed  Google Scholar 

  • Hoehenwarter W, Larhlimi A, Hummel J et al (2011) MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber. J Prot Res 10:2979–2991

    CAS  Google Scholar 

  • Hougas RW, Peloquin SJ, Gabert AC (1964) Effect of seed parent and pollinator on the frequency of haploids in Solanum tuberosum. Crop Sci 4:593–595

    Google Scholar 

  • Hunt MD, Eannetta NT, Yu H et al (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol Biol 21:59–68

    CAS  PubMed  Google Scholar 

  • Hutvágner G, Bánfalvi Z, Milánkovics I et al (2001) Molecular markers associated with leptinine production are located on chromosome 1 in Solanum chacoense. Theor Appl Genet 102:1065–1071

    Google Scholar 

  • Isherwood FA (1973) Starch–sugar interconversion in Solanum tuberosum. Phytochemistry 12:2579–2591

    CAS  Google Scholar 

  • Jacobs JME, Eck HJ, Arens P et al (1995) A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theor Appl Genet 91:289–300

    CAS  PubMed  Google Scholar 

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    CAS  PubMed  Google Scholar 

  • Jung C, Griffiths H, De Jong D et al (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120:45–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoun S, Smart CD (2005) Late blight of potato and tomato in the genomics era. Plant Dis 89:692–699

    CAS  Google Scholar 

  • Kasai K, Morikawa Y, Sorri VA et al (2000) Development of SCAR markers to the PVY resistance gene Ry adg based on a common feature of plant disease resistance genes. Genome 43:1–8

    CAS  PubMed  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98:6511–6515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura T, Otani M, Noda T et al (2001) Absence of amylose in sweet potato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase I cDNA. Plant Cell Rep 20:663–666

    CAS  Google Scholar 

  • Kirkman MA (2007) Global markets for processed potato products. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology, advances and perspectives. Elsevier, Amsterdam, pp 27–44

    Google Scholar 

  • Kloosterman B, Oortwijn M, uitdeWilligen J et al (2010) From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genom 11:158

    Google Scholar 

  • Kossmann J, Abel GJW, Springer F et al (1999) Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta 208:503–511

    CAS  PubMed  Google Scholar 

  • Kreike CM, de Koning JRA, Vinke JH et al (1994) Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769

    CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    CAS  PubMed  Google Scholar 

  • Leonards-Schippers C, Gieffers W, Schafer-Pregl R et al (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77

    CAS  PubMed  Google Scholar 

  • Li L, Strahwald J, Hofferbert HR et al (2005a) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–821

    CAS  Google Scholar 

  • Li X-Q, De Jong H, De Jong DM, De Jong WS (2005b) Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theor Appl Genet 110:1068–1073

    CAS  Google Scholar 

  • Li L, Paulo MJ, Strahwald J et al (2008) Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor Appl Genet 116:1167–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Paulo MJ, van Eeuwijk F, Gebhardt C (2010) Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theor Appl Genet 121:1303–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lincoln SE, Lander E (1989) Mapping genes controlling quantitative traits with Mapmaker/QTL. Whithead Institute for Biomedical Research Technical Report, Cambridge, MA

    Google Scholar 

  • Liu X, Song B, Zhang H et al (2010) Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Mol Genet Genomics 284:147–159

    CAS  PubMed  Google Scholar 

  • Liu X, Zhang C, Ou Y et al (2011) Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics 286:109–118

    CAS  PubMed  Google Scholar 

  • Lorberth R, Ritte G, Willmitzer L, Kossmann J (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotech 16:473–477

    CAS  Google Scholar 

  • Lu W, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hort Sci 126:722–726

    CAS  Google Scholar 

  • Luo ZW, Hackett CA, Bradshaw JE et al (2001) Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157:1369–1385

    CAS  PubMed  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    CAS  PubMed  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    CAS  PubMed  Google Scholar 

  • Marczewski W, Flis B, Syller J et al (2001) A major quantitative trait locus for resistance to potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol Plant Microbe Interact 14:1420–1425

    CAS  PubMed  Google Scholar 

  • Marczewski W, Flis B, Syller J et al (2004) Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theor Appl Genet 109:1604–1609

    CAS  PubMed  Google Scholar 

  • Maris B (1966) The modifiability of characters important in potato breeding. Euphytica 15:18–31

    Google Scholar 

  • Mayton H, Griffiths H, Simko I et al (2010) Foliar and tuber late blight resistance in a Solanum tuberosum breeding population. Plant Breeding 129:197–201

    CAS  Google Scholar 

  • McGregor I (2007) The fresh potato market. In: Vreudgenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 3–26

    Google Scholar 

  • Medina TM, Fogelman EF, Chani EC et al (2002) Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theor Appl Genet 105:1010–1018

    CAS  PubMed  Google Scholar 

  • Menendez CM, Ritter E, Schafer-Pregl R et al (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162:1423–1434

    CAS  PubMed  Google Scholar 

  • Meyer RC, Milbourne D, Hackett CA et al (1998) Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet 259:150–160

    CAS  PubMed  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    CAS  PubMed  Google Scholar 

  • Moloney C, Griffin D, Jones P et al (2010) Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theor Appl Genet 120:679–689

    CAS  PubMed  Google Scholar 

  • Mondy NI, Munshi CB (1993) Effect of maturity and storage on ascorbic acid and tyrosine concentrations and enzymic discoloration of potatoes. J Agric Food Chem 41:1868–1871

    CAS  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW et al (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    CAS  PubMed  Google Scholar 

  • Morrison WR, Karkalas J (1990) Starch. In Dey PM (ed) Carbohydrates. Methods in plant biochemistry, vol 2. Academic Press, London, pp 323–325

    Google Scholar 

  • Mulder A, Turkensteen LJ (2005) Potato diseases. NIVAP Holland, Den Haag

    Google Scholar 

  • Murphy JP, Kong F, Pinto DM, Wang-Pruski G (2010) Relative quantitative proteomic analysis reveals wound response proteins correlated with after-cooking darkening. Proteomics 10:4258–4269

    CAS  PubMed  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oro E et al (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122

    CAS  PubMed  Google Scholar 

  • Oberhagemann P, Chatot-Balandras C, Schafer-Pregl R et al (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5:399–415

    CAS  Google Scholar 

  • Odeny DA, Stich B, Gebhardt C (2010) Physical organization of mixed protease inhibitor gene clusters, coordinated expression and association with resistance to late blight at the StKI locus on potato chromosome III. Plant Cell Env 33:2149–2161

    CAS  Google Scholar 

  • Pajerowska-Mukhtar KM, Mukhtar MS, Guex N, et al (2008) Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta 228:293–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pajerowska-Mukhtar K, Stich B, Achenbach U et al (2009) Single nucleotide polymorphisms in the Allene Oxide Synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181:1115–1127

    CAS  PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed Central  PubMed  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM et al (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    CAS  PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    CAS  Google Scholar 

  • PGSC (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Google Scholar 

  • Plaisted R, Tingey W, Steffens J (1992) The germplasm release of NYL 235–4, a clone with resistance to the Colorado potato beetle. Am Potato J 69:843–846

    Google Scholar 

  • Portis AR, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    CAS  PubMed  Google Scholar 

  • Powell W, Uhrig H (1987) Anther culture of Solanum genotypes. Plant Cell Tissue Organ Cult 11:13–24

    Google Scholar 

  • Preiss J, Ball K, Smith-White B et al (1991) Starch biosynthesis and its regulation. Biochem Soc Trans 19:539–547

    CAS  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    CAS  PubMed  Google Scholar 

  • Pritchard JK (2001) Deconstructing maize population structure. Nat Genet 28:203–204

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Ravi V, Aked J (1996) Review on tropical root and tuber crops. II. Physiological disorders in freshly stored roots and tubers. Crit Rev Food Sci Nutr 36:711–731

    CAS  PubMed  Google Scholar 

  • Regierer B, Fernie AR, Springer F et al (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotech 20:1256–1260

    CAS  Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    CAS  PubMed  Google Scholar 

  • Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887

    CAS  PubMed  Google Scholar 

  • Ronning CM, Stommel JR, Kowalski SP et al (1999) Identification of molecular markers associated with leptine production in a population of Solanum chacoense Bitter. Theor Appl Genet 98:39–46

    CAS  Google Scholar 

  • Ross H (1986) Potato breeding—problems and perspectives. Paul Parey, Berlin

    Google Scholar 

  • Ross HA, Wright KM, McDougall GJ et al (2011) Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. J Exp Bot 62:371–381

    CAS  PubMed  Google Scholar 

  • Rouppe van der Voort JNAM, Lindeman W, Folkertsma R et al (1998) A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theor Appl Genet 96:654–661

    Google Scholar 

  • Rouppe van der Voort J, van der Vossen E, Bakker E et al (2000) Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theor Appl Genet 101:1122–1130

    Google Scholar 

  • Sandbrink JM, Colon LT, Wolters P, Stiekema WJ (2000) Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Mol Breed 6:215–225

    CAS  Google Scholar 

  • Sattarzadeh A, Achenbach U, Lubeck J et al (2006) Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3. Mol Breed 18:301–312

    CAS  Google Scholar 

  • Schäfer-Pregl R, Ritter E, Concilio L et al (1998) Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor Appl Genet 97:834–846

    Google Scholar 

  • Scheele Cv, Svensson G, Rasmussen J (1937) Die Bestimmung des Stärkegehaltes und der Trockensubstanz der Kartoffel mit Hilfe des spezifischen Gewichts. Landw VersStn 127:67–96

    Google Scholar 

  • Scheidig A, Fröhlich A, Schulze S et al (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30:581–591

    CAS  PubMed  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ et al (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotech 18:551–554

    CAS  Google Scholar 

  • Seo YS, Kim EY, Mang HG, Kim WT (2008) Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J 53:895–908

    CAS  PubMed  Google Scholar 

  • Silva GH, Chase RW, Hammerschmidt R, Cash JN (1991) After-cooking darkening of Spartan Pearl potatoes as influenced by location, phenolic acids, and citric acid. J Agric Food Chem 39:871–873

    CAS  Google Scholar 

  • Simko I (2002) Comparative analysis of quantitative trait loci for foliage resistance to Phytophthora infestans in tuber-bearing Solanum species. Am J Pot Res 79:125–132

    CAS  Google Scholar 

  • Simko I, McMurry S, Yang HM et al (1997) Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol 115:1453–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Å imko I, Vreugdenhil D, Jung CS, May GD (1999) Similarity of QTLs detected for in vitro and greenhouse development of potato plants. Mol Breed 5:417–428

    Google Scholar 

  • Simko I, Costanzo S, Haynes KG et al (2004) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224

    CAS  PubMed  Google Scholar 

  • Simko I, Costanzo S, Ramanjulu V et al (2006a) Mapping polygenes for tuber resistance to late blight in a diploid Solanum phureja × S. stenotomum hybrid population. Plant Breed 125:385–389

    Google Scholar 

  • Simko I, Haynes KG, Jones RW (2006b) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237–2245

    CAS  Google Scholar 

  • Åšliwka J, Wasilewicz-Flis I, Jakuczun H, Gebhardt C (2008) Tagging quantitative trait loci for dormancy, tuber shape, regularity of tuber shape, eye depth and flesh colour in diploid potato originated from six Solanum species. Plant Breed 127:49–55

    Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7:126–131

    CAS  Google Scholar 

  • Song Y-S, Schwarzfischer A (2008) Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. Am J Pot Res 85:159–170

    CAS  Google Scholar 

  • Song Y-S, Hepting L, Schweizer G et al (2005) Mapping of extreme resistance to PVY (Ry sto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor Appl Genet 111:879–887

    CAS  PubMed  Google Scholar 

  • Sørensen KK, Madsen MH, Kirk HG et al (2006) Linkage and quantitative trait locus mapping of foliage late blight resistance in the wild species Solanum vernei. Plant Breed 125:268–276

    Google Scholar 

  • Sorensen KK, Kirk HG, Olsson K et al (2008) A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum x S. sparsipilum located on chromosome I. Theor Appl Genet 117:1–9

    PubMed  Google Scholar 

  • Sowokinos JR, Vigdorovich V, Abrahamsen M (2004) Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweetening. J Plant Physiol 161:947–955

    CAS  PubMed  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 5:739–744

    Google Scholar 

  • Stevens LH, Davelaar E (1997) Biochemical potential of potato tubers to synthesize blackspot pigments in relation to their actual blackspot susceptibility. J Agric Food Chem 45:4221–4226

    CAS  Google Scholar 

  • Stewart HE, Bradshaw JE, Pande B (2003) The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol 52:193–198

    Google Scholar 

  • Stich B, Gebhardt C (2011) Detection of epistatic interactions in association mapping populations: an example from tetraploid potato. Heredity 107:537–547

    CAS  PubMed  Google Scholar 

  • Stich B, Melchinger A (2009) Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genom 10:94

    Google Scholar 

  • Stich B, Melchinger AE, Frisch M et al (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    PubMed  Google Scholar 

  • Stich B, Melchinger A, Piepho H-P et al (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130

    PubMed  Google Scholar 

  • Suttle JC (2007) Dormancy and sprouting. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology, advances and perspectives. Elsevier, Amsterdam, pp 287–309

    Google Scholar 

  • Takken FLW, Joosten MHAJ (2000) Plant resistance genes: their structure, function and evolution. Eur J Plant Pathol 106:699–713

    CAS  Google Scholar 

  • Talburt WF, Smith O (1987) Potato processing, 4th edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Tan MYA, Park T-H, Alles R et al (2009) GpaXI tar originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato. Theor Appl Genet 119:1477–1487

    Google Scholar 

  • Taylor MA, McDougall GJ, Stewart D (2007) Potato flavor and texture. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology, advances and perspectives. Elsevier, Amsterdam, pp 525–540

    Google Scholar 

  • Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595

    CAS  PubMed  Google Scholar 

  • Thomas P, Adam S, Diehl JF (1979) Role of citric acid in the after-cooking darkening of gamma-irradiated potato tubers. J Agric Food Chem 27:519–523

    CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    CAS  PubMed  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD et al (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci U S A 97:11192–11197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thygesen PW, Dry IB, Robinson SP (1995) Polyphenol oxidase in potato. A multigene family that exhibits differential expression patterns. Plant Physiol 109:525–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Townsend LR, Hope GW (1960) Factors influencing the color of potato chips. Can J Plant Sci 40:58–64

    Google Scholar 

  • Urbany C, Colby T, Stich B et al (2011a) Analysis of natural variation of the potato tuber proteome reveals novel candidate genes for tuber bruising. J Proteome Res 11:703–716

    Google Scholar 

  • Urbany C, Stich B, Schmidt L et al (2011b) Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genom 12:7

    CAS  Google Scholar 

  • Valkonen JJP (2007) Viruses: economical losses and biotechnological potential. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 619–633

    Google Scholar 

  • van den Berg J, Ewing E, Plaisted R et al (1996a) QTL analysis of potato tuber dormancy. Theor Appl Genet 93:317–324

    Google Scholar 

  • van den Berg J, Ewing E, Plaisted R et al (1996b) QTL analysis of potato tuberization. Theor Appl Genet 93:307–316

    Google Scholar 

  • Van der Wolf JM, De Boer SH (2007) Bacterial pathogens of potato. In: Vreudgenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 595–617

    Google Scholar 

  • van Eck HJ (2007) Genetics of morphological and tuber traits. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 91–115

    Google Scholar 

  • van Eck HJ, Jacobs JME, van den Berg PMMM et al (1994) The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin colour loci using RFLPs. Heredity 73:410–421

    Google Scholar 

  • Van Gelder WMJ, Vinke JH, Scheffer JJC (1988) Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 37S:147–158

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Ann Rev Phytopathol 44:135–162

    CAS  Google Scholar 

  • Van Ooijen JW, Maliepaard C (1996) MAPQTL version 3.0: software for the calculation of QTL positions on genetic maps, 3 edn. CPRO-DLO, Wageningen

    Google Scholar 

  • Villamon FG, Spooner DM, Orrillo M et al (2005) Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theor Appl Genet 111:1201–1214

    CAS  PubMed  Google Scholar 

  • Visker M, Keizer L, Van Eck H et al (2003) Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet 106:317–325

    CAS  PubMed  Google Scholar 

  • Visker M, van Raaij HMG, Keizer LCP et al (2004) Correlation between late blight resistance and foliage maturity type in potato. Euphytica 137:311–323

    CAS  Google Scholar 

  • Visker MHPW, Heilersig HJB, Kodde LP et al (2005) Genetic linkage of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphytica 143:189–199

    CAS  Google Scholar 

  • Visser RGF, Somhorst I, Kuipers GJ et al (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296

    CAS  PubMed  Google Scholar 

  • Wang-Pruski G, Nowak J (2004) Potato after-cooking darkening. Am J Pot Res 81:7–16

    CAS  Google Scholar 

  • Wang-Pruski G, Zebarth B, Leclerc Y et al (2007) Effect of soil type and nutrient management on potato after-cooking darkening. Am J Pot Res 84:291–299

    CAS  Google Scholar 

  • Wasternack C, Kombrink E (2009) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Google Scholar 

  • Wastie RL (1991) Breeding for resistance. Adv Plant Pathol 7:193–224

    Google Scholar 

  • Wendt UK, Wenderoth I, Tegeler A, Von Schaewen A (2000) Molecular characterization of a novel glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J 23:723–733

    CAS  PubMed  Google Scholar 

  • Werij JS, Kloosterman B, Celis-Gamboa C et al (2007) Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis. Theor Appl Genet 115:245–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witek K, Strzelczyk-Å»yta D, Hennig J, Marczewski W (2006) A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-fsto and Ns. Mol Breed 18:273–275

    CAS  Google Scholar 

  • Wolters AM, Uitdewilligen JG, Kloosterman BA et al (2010) Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol 73:659–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Qiang X, Owsiany K et al (2011) Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Proteome Res 10:4647–4660

    Google Scholar 

  • Yencho GC, Kowalski SP, Kobayashi RS et al (1998) QTL mapping of foliar glycoalkaloid aglycones in Solanum tuberosum× S. berthaultii potato progenies: quantitative variation and plant secondary metabolism. Theor Appl Genet 97:563–574

    CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jung CS, De Jong WS (2009) Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet 119:143–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng GH, Sosulski FW (1998) Determination of water separation from cooked starch and flour pastes after refrigeration and freeze-thaw. J Food Sci 63:134–139

    CAS  Google Scholar 

  • Zhou D, Mattoo A, Li N, Imaseki H, Solomos T (1994) Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol 106:397–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimnoch-Guzowska E, Marczewski W, Lebecka R et al (2000) QTL analysis of new sources of resistance to Erwinia carotovora ssp atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Sci 40:1156–1167

    CAS  Google Scholar 

  • Zrenner R, Schüler K, Sonnewald U (1996) Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198:246–252

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Gebhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gebhardt, C., Urbany, C., Stich, B. (2014). Dissection of Potato Complex Traits by Linkage and Association Genetics as Basis for Developing Molecular Diagnostics in Breeding Programs. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_3

Download citation

Publish with us

Policies and ethics