Skip to main content

Molecular Breeding for Quality Protein Maize (QPM)

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Maize endosperm protein is deficient in two essential amino acids, lysine and tryptophan. Several spontaneous and induced mutations that affect amino acid composition in maize have been discovered amongst which the o2 gene (opaque2) has been used in association with endosperm and amino acid modifier genes for developing Quality Protein Maize (QPM), which contains almost double the amount of endosperm lysine and tryptophan as compared to the normal/non-QPM maize. These increases have been shown to have dramatic impacts on human and animal nutrition, growth and performance. A range of hard endosperm QPM germplasm has been developed at the International Maize and Wheat Improvement Center (CIMMYT) mostly through conventional breeding approaches to meet the requirements of various maize growing regions across the world. Microsatellite markers located within the o2 gene provided opportunities for accelerating the pace of QPM conversion programs through marker-assisted selection (MAS). More recently, CIMMYT scientists are striving to develop reliable, easy-to-use markers for endosperm hardness and free amino acid content in the maize endosperm. Recent technological developments including high throughput, single seed-based DNA extraction, coupled with low-cost, high density SNP genotyping strategies, and breeder-ready markers for some key adaptive traits in maize, promise enhanced efficiency and cost effectiveness of MAS in QPM breeding programs. Here, we present a summary of QPM research and breeding with particular emphasis on genetic and molecular basis of o2, epistasis between o2 and other high-lysine mutant genes, and the recent advances in genomics technologies that could potentially enhance the efficiency of molecular breeding for QPM in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker assisted selection in crop breeding-prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Babu R, Nair SK, Kumar A et al (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Atlin G, Vivek B et al (2009) Bulked segregant analysis using the high throughput maize GoldenGate SNP genotyping assay reveals multiple genomic regions associated with kernel hardness and tryptophan content in quality protein maize. Maize Genet Conf Abstracts 51:P178

    Google Scholar 

  • Babu R, Rojas NP, Gao S, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bantte K, Prasanna BM (2003) Simple sequence repeat polymorphism in Quality Protein Maize (QPM) lines. Euphytica 129:337–344

    Article  CAS  Google Scholar 

  • Bass HW, Webster C, Obrian GR et al (1992) A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell 4:225–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bjarnason M, Pollmer WG (1972) The maize germ: Its role as contributing factor to protein quantity and quality. Zeitschrift Pflanzenzuchtung 68:83–89

    Google Scholar 

  • Bjarnason M, Vasal SK (1992) Breeding of quality protein maize (QPM). Plant Breed Rev 9:181–216

    CAS  Google Scholar 

  • Bressani R (1991) Protein quality of high lysine maize for humans. Cereal Food World 36:806–811

    Google Scholar 

  • Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters (I): Costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  • FAO (1992) Maize in human nutrition. Food and nutrition series, no. 25. Food and Agriculture Organization (FAO), Rome, Italy

    Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999a) Comparison of selection strategies for marker assisted back crossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999b) Minimum sample size and optimum positioning of flanking markers in marker assisted back crossing for transfer of a target gene. Crop Sci 39:967–975

    Article  Google Scholar 

  • Gao S, Martinez C, Skinner DJ et al (2008) Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breed 22:477–494

    Article  CAS  Google Scholar 

  • Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233

    Article  CAS  PubMed  Google Scholar 

  • Graham GG, Lembcke J, Morales E (1990) Quality protein maize as the sole source of dietary protein and fat for rapidly growing young children. Pediatrics 85:85–91

    CAS  PubMed  Google Scholar 

  • Gunaratna NS, De Groote H, Nestel P, Pixley KV, McCabe, CP (2010). A meta-analysis of community-based studies on quality protein maize. Food Policy. 35:202–210.

    Google Scholar 

  • Gupta HS, Agarwal PK, Mahajan V et al (2009) Quality protein maize for nutritional security: Rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Gupta HS, Babu R, Agarwal PK, Mahajan V et al (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132:77–82

    Article  CAS  Google Scholar 

  • Gutierrez-rojas LA (2007) Quantitative trait loci analysis to identify modifier genes of the gene o2 in maize endosperm. PhD Dissertation, Texas A & M University

    Google Scholar 

  • Habben IE, Kirleis AW, Larkins BA (1993) The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant Mol Biol 23:825–838

    Article  CAS  PubMed  Google Scholar 

  • Holding DR, Hunter BG, Chung T et al (2008) Genetic analysis of o2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170

    Article  CAS  PubMed  Google Scholar 

  • Huang SS, Adams WR, Zhou Q et al (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agric Food Chem 52:1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Huang SS, Kruger DE, Frizzi A et al (2005) High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotech J 3:555–569

    Article  CAS  Google Scholar 

  • Huang SS, Frizzi A, Florida CA et al (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD alpha-zeins. Plant Mol Biol 61:525–535

    Article  CAS  PubMed  Google Scholar 

  • Krivanek AF, De Groote H, Gunaratna NS et al (2007) Breeding and disseminating quality protein maize (QPM) for Africa. African J Biotech 6:312–324

    CAS  Google Scholar 

  • Lin KR, Bockoit AJ, Smith JD (1997) Utilization of molecular probes to facilitate development of Quality Protein Maize. Maize Genet Coop News 71:22–23

    Google Scholar 

  • Lohmer S, Maddaloni M, Motto M et al (1991) The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J 10:617–624

    CAS  PubMed  Google Scholar 

  • Lopes MA, Takasaki K, Botswick DE et al (1995) Identifications of two o2 modifier loci in Quality Protein Maize. Mol Gen Genet 247:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Nelson OE (1975) Amino acid composition and storage proteins in two new high lysine mutants in maize. Cereal Chem 52:412–419

    CAS  Google Scholar 

  • Melchinger AE (1990) Use of molecular markers in plant breeding. Plant Breed 104:1–19

    Article  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant genes that change protein composition and increase lysine content of maize endosperm. Science 145:279–280

    Article  CAS  PubMed  Google Scholar 

  • Misra PS, Jambunathan R, Mertz ET et al (1972) Endosperm protein synthesis in maize mutants with increased lysine content. Science 176:1426

    Article  Google Scholar 

  • Motto M, Maddolini M, Panziani G et al (1988) Molecular cloning of the o2-m5 allele of Zea mays, using transposon tagging. Mol Gen Genet 121:488–494

    Article  Google Scholar 

  • Nelson OE (1981) The mutants opaque9 through opaque13. Maize Genetics Coop. Newsletter 55:68

    Google Scholar 

  • Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1470

    Article  CAS  PubMed  Google Scholar 

  • Osborne TB, Mendel LB (1914) Nutritive properties of protein of the maize kernel. J Biol Chem 18:1–16

    CAS  Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML, Xie C (2010) Molecular marker-assisted breeding for maize improvement in Asia. Molecular Breeding. 26:339–356

    Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308–1319

    CAS  Google Scholar 

  • Ribaut JM, Hoisington DA (1998) Marker assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Salamini F, Di Fonzo N, Fornasari E et al (1983) Mucronate, mc, a dominant gene of maize which interacts with o2 to suppress zein synthesis. Theor Appl Genet 65:123–128

    Article  CAS  PubMed  Google Scholar 

  • Salamini F, Di Fonzo N, Gentinetta E, Soave C (1997) A dominant mutation interfering with protein accumulation in maize seeds. In: Seed protein improvement in cereals and grain legumes, IAEA, Vienna, p. 97

    Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50

    Article  CAS  PubMed  Google Scholar 

  • Segal G, Song RT, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    CAS  PubMed  Google Scholar 

  • Shiferaw B, Prasanna B, Hellin J, Banziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3:307–327

    Article  Google Scholar 

  • Singleton WR (1939) Recent linkage studies in maize: V. opaque endosperm-2 (o2). Genetics 24:61–63

    Google Scholar 

  • Soave C, Reggiani R, Di Fonzo N, Salamini F (1982) Clustering of genes for 20 kd zein sub units in the short arm of maize chromosome 7. Genetics 97:363–377

    Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Bio Rep 1:1–3

    Article  Google Scholar 

  • Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445–450

    Google Scholar 

  • Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445–450

    Google Scholar 

  • Vasal SK (2001) High quality protein corn. In: Hallauer A (ed) Specialty corn, 2nd edn. CRC, Boca Raton, FL, pp 85–129

    Google Scholar 

  • Vasal SK, Villegas E, Bjarnason M et al (1980) Genetic modifiers and breeding strategies in developing hard endosperm o2 materials. In: Pollmer WG and Phipps RH (eds) Improvement of quality traits of maize grain and silage use

    Google Scholar 

  • Villegas E, Ortega E, Bauer R (1984) Chemical methods used at CIMMYT for determining protein quality in corn. CIMMYT, Mexico

    Google Scholar 

  • Wang X, Larkins BA (2001) Genetic analysis of amino acid accumulation in o2 maize endosperm. Plant Physiol 12:1766–1777

    Article  Google Scholar 

  • Wang X, Stumpf DK, Larkins BA (2001) Aspartate kinase 2-a candidate gene of quantitative trait locus influencing free amino acid content in maize endosperm. Plant Physiol 125:778–787

    Google Scholar 

  • Wang X, Lopez-Valenzuela JA, Gibbon BC et al (2007) Characterization of monofunctional aspartate kinase genes in maize and their relationship with free amino acid content in the endosperm. J Exp Bot 58:2653–2660

    Article  CAS  PubMed  Google Scholar 

  • Wu RL, Lou XY, Ma CX et al (2002) An improved genetic model generates high-resolution mapping of QTL for protein quality in maize endosperm. Proc Natl Acad Sci USA 99:11281–11286

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Messing J (2011) Novel genetic selection system for Quantitative Trait Loci of Quality Protein Maize. Genetics 188:1019–1022

    Article  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker assisted selection in plant breeding: From publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang W, Zheng Y, Ni S, Wu J (2004) Recessive allelic variation of three microsatellite sites within the o2 gene in maize. Plant Mol Biol Rep 22:361–374

    Article  CAS  Google Scholar 

  • Yang W, Zheng Y, Zheng W, Feng R (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breed 15:257–269

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Babu, R., Prasanna, B. (2014). Molecular Breeding for Quality Protein Maize (QPM). In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_21

Download citation

Publish with us

Policies and ethics