Skip to main content

Leaf-Level Models of Constitutive and Stress-Driven Volatile Organic Compound Emissions

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

This chapter provides a review of past and contemporary leaf-level emission algorithms that have been and currently are in use for modelling the emissions of biogenic volatile organic compounds (BVOCs) from plants. The chapter starts with a brief overview about historical efforts and elaborates on processes that describe the direct emission responses to environmental factors such as temperature and light. These phenomenological descriptions have been widely and successfully used in emission models at scales ranging from the leaf to the globe. However, while the models provide tractable mathematical functions that link environmental drivers and emission rates, and as such can be easily incorporated in higher scale predictive models, they do not provide the mechanistic context required to describe interactions among drivers and indirect influences on interactions such as those due to acclimation, accumulated stress and ontogeny. Following a discussion of these issues and the limitations they impose on the current state of model-based prognoses of BVOC emissions, we describe in some detail the knowledge gaps that need to be filled in order to move BVOC emission models into forms that are more directly coupled to physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot DS, Palmer PI, Martin RV, Chance KV, Jacob DJ, Guenther A (2003) Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys Res Lett 30:1886–1889

    Google Scholar 

  • Anderson LJ, Harley PC, Monson RK, Jackson RB (2000) Reduction of isoprene emissions from live oak (Quercus fusiformis) with oak wilt. Tree Physiol 20:1199–1203

    PubMed  CAS  Google Scholar 

  • Arimura GI, Tashiro K, Kuhara S, Nishioka TOR, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivory-induced volatiles. Biochem Biophys Res Commun 277:305–310

    PubMed  CAS  Google Scholar 

  • Arimura G-I, Ozawa R, Maffei ME (2011) Recent advances in plant early signaling in response to herbivory. Int J Mol Sci 12:3723–3739

    PubMed  CAS  Google Scholar 

  • Arneth A, Niinemets Ü, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T, Wolf A, Smith B (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7:31–53

    CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Babst BA, Sjödin A, Jansson S, Orians CM (2009) Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus. Tree Genet Genomes 5:459–474

    Google Scholar 

  • Banchio E, Zygadlo J, Valladares GR (2005) Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis. J Chem Ecol 31:719–727

    PubMed  CAS  Google Scholar 

  • Baraldi R, Rapparini F, Oechel WC, Hastings SJ, Bryant P, Cheng Y, Miglietta F (2004) Monoterpene emission responses to elevated CO2 in a Mediterranean-type ecosystem. New Phytol 161:17–21

    CAS  Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    CAS  Google Scholar 

  • Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Global Change Biol 13:2538–2550

    Google Scholar 

  • Blande JD, Turunen K, Holopainen JK (2009) Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation. Environ Pollut 157:174–180

    PubMed  CAS  Google Scholar 

  • Bolwell PG, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    PubMed  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Ann Rev Phytopathol 43:545–580

    CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    PubMed  CAS  Google Scholar 

  • Brilli F, Hörtnagl L, Bamberger I, Schnitzhofer R, Ruuskanen TM, Hansel A, Loreto F, Wohlfahrt G (2012) Qualitative and quantitative characterization of volatile organic compound emissions from cut grass. Environ Sci Technol 46:3859–3865

    PubMed  CAS  Google Scholar 

  • Brüggemann N, Schnitzler J-P (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings. Plant Biol 4:456–463

    Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Mugnozza GS, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    PubMed  CAS  Google Scholar 

  • Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61

    PubMed  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Cescatti A, Niinemets Ü (2004) Sunlight capture. Leaf to landscape. In: Smith WK, Vogelmann TC, Chritchley C (eds) Photosynthetic adaptation: chloroplast to landscape. Springer, Berlin, pp 42–85

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modelling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129:569–585

    Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    PubMed  CAS  Google Scholar 

  • Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594

    PubMed  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Vislap V, Niinemets Ü (2011) Volatile emissions from Alnus glutinosa induced by herbivory are quantitatively related to the extent of damage. J Chem Ecol 37:18–28

    PubMed  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    PubMed  CAS  Google Scholar 

  • Davison B, Brunner A, Ammann C, Spirig C, Jocher M, Neftel A (2008) Cut-induced VOC emissions from agricultural grasslands. Plant Biol 10:76–85

    PubMed  CAS  Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. J Plant Physiol 143:465–472

    CAS  Google Scholar 

  • Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    PubMed  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    PubMed  CAS  Google Scholar 

  • Fall R, Monson RK (1992) Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol 100:987–992

    PubMed  CAS  Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974

    CAS  Google Scholar 

  • Fang C, Monson RK, Cowling EB (1996) Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. Tree Physiol 16:441–446

    PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Water relations and photosynthetic productivity. Springer, Berlin, pp 549–588

    Google Scholar 

  • Farquhar GD, Wong SC (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11:191–210

    CAS  Google Scholar 

  • Fischbach RJ, Zimmer I, Steinbrecher R, Pfichner A, Schnitzler J-P (2000) Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L. Phytochemistry 54:257–265

    PubMed  CAS  Google Scholar 

  • Fischbach RJ, Staudt M, Zimmer I, Rambal S, Schnitzler J-P (2002) Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex. Physiol Plant 114:354–360

    PubMed  CAS  Google Scholar 

  • Fuentes JD, Wang D (1999) On the seasonality of isoprene emissions from a mixed temperate forest. Ecol Appl 9:1118–1131

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Funk JL, Giardina CP, Knohl A, Lerdau MT (2006) Influence of nutrient availability, stand age, and canopy structure on isoprene flux in a Eucalyptus saligna experimental forest. J Geophys Res 111:G02012. doi:10.1029/2005JG000085

    Google Scholar 

  • Geron CD, Nie D, Arnts RR, Sharkey TD, Singsaas EL, Vanderveer PJ, Guenther A, Sickles JE II, Kleindienst TE (1997) Biogenic isoprene emission: model evaluation in a southeastern United States bottomland deciduous forest. J Geophys Res 102:18903–18916

    Google Scholar 

  • Grinspoon J, Bowman WD, Fall R (1991) Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves. Plant Physiol 97:170–174

    PubMed  CAS  Google Scholar 

  • Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure – a model based exercise with a process-based emission model. New Phytol 173:550–561

    PubMed  CAS  Google Scholar 

  • Grote R, Niinemets Ü (2008) Modeling volatile isoprenoid emissions – a story with split ends. Plant Biol 10:8–28

    PubMed  CAS  Google Scholar 

  • Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler J-P (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos Environ 40:152–165

    Google Scholar 

  • Grote R, Lavoir AV, Rambal S, Staudt M, Zimmer I, Schnitzler J-P (2009) Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy. Oecologia 160:213–223

    PubMed  Google Scholar 

  • Grote R, Keenan T, Lavoir A-V, Staudt M (2010) Process-based modelling of seasonality and drought stress in isoprenoid emission models. Biogeosciences 7:257–274

    CAS  Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther AB, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. J Geophys Res 96:10799–10808

    Google Scholar 

  • Guenther A, Zimmerman P, Harley P, Monson R, Fall R (1993) Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analysis. J Geophys Res 98:12609–12617

    Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    CAS  Google Scholar 

  • Guenther A, Baugh B, Brasseur G, Greenberg J, Harley P, Klinger L, Serça D, Vierling L (1999) Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J Geophys Res 104:30625–30640

    CAS  Google Scholar 

  • Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230

    CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modelling biogenic emissions. Geosci Model Dev 5:1471–1492

    Google Scholar 

  • Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32:1825–1833

    CAS  Google Scholar 

  • Hakola H, Laurila T, Lindfors V, Hellen H, Gaman A, Rinne J (2001) Variation of the VOC emission rates of birch species during the growing season. Boreal Environ Res 6:237–249

    CAS  Google Scholar 

  • Hakola H, Tarvainen V, Laurila T, Hiltunen V, Hellen H, Keronen P (2003) Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos Environ 37:1623–1634

    CAS  Google Scholar 

  • Hanson DT, Sharkey TD (2001) Rate of acclimation of the capacity for isoprene emission in response to light and temperature. Plant Cell Environ 24:937–946

    CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    CAS  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16:25–32

    PubMed  CAS  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1997) Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiol 17:705–714

    PubMed  CAS  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn B, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021

    PubMed  CAS  Google Scholar 

  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang G, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140

    Google Scholar 

  • Heiden AC, Kobel K, Langebartels C, Schuh-Thomas G, Wildt J (2003) Emissions of oxygenated volatile organic compounds from plants. Part I. Emissions from lipoxygenase activity. J Atmos Chem 45:143–172

    CAS  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    PubMed  CAS  Google Scholar 

  • Helmig D, Ortega J, Duhl T, Tanner D, Guenther A, Harley P, Wiedinmyer C, Milford J, Sakulyanontvittaya T (2007) Sesquiterpene emissions from pine trees. Identifications, emission rates and flux estimates for the contiguous United States. Environ Sci Technol 41:1545–1553

    PubMed  CAS  Google Scholar 

  • Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168

    PubMed  CAS  Google Scholar 

  • Himanen SJ, Nerg A-M, Nissinen A, Pinto DM, Stewart CN, Poppy GM, Holopainen JK (2009) Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol 181:174–186

    PubMed  CAS  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533

    PubMed  CAS  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, pp –

    Google Scholar 

  • Holzinger R, Lee A, McKay M, Goldstein AH (2006) Seasonal variability of monoterpene emission factors for a ponderosa pine plantation in California. Atmos Chem Phys 6:1267–1274

    CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    PubMed  CAS  Google Scholar 

  • Johnson FH, Eyring H, Williams RW (1942) The nature of enzyme inhibitions in bacterial luminescence: sulfanilamide, urethane, temperature and pressure. J Cell Comp Physiol 20:247–268

    CAS  Google Scholar 

  • Karl T, Guenther A, Turnipseed A, Patton EG, Jardine K (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5:1287–1294

    CAS  Google Scholar 

  • Keenan T, Niinemets Ü, Sabaté S, Gracia C, Peñuelas J (2009) Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: implications for regional VOC emissions modelling. J Geophys Res 114:D22202. doi:10.1029/2009JD011904:

    Google Scholar 

  • Keenan T, Grote R, Sabate S (2011) Overlooking the canopy: the importance of canopy structure in scaling isoprenoid emissions from leaf to canopy. Ecol Model 222:737–747

    CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    PubMed  CAS  Google Scholar 

  • Kirstine WV, Galbally IE (2004) A simple model for estimating emissions of volatile organic compounds from grass and cut grass in urban airsheds and its application to two Australian cities. J Air Waste Manage Assoc 54:1299–1311

    CAS  Google Scholar 

  • König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC, Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected Mid-European agricultural and natural plant species. Atmos Environ 29:861–874

    Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Kesselmeier J (2004) Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development. Plant Cell Environ 27:1469–1485

    CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kuzma J, Fall R (1993) Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101:435–440

    PubMed  CAS  Google Scholar 

  • Lavoir AV, Duffet C, Mouillot F, Rambal S, Ratte JP, Schnitzler J-P, Staudt M (2011) Scaling-up leaf monoterpene emissions from a water limited Quercus ilex woodland. Atmos Environ 45:2888–2897

    CAS  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler J-P (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504

    CAS  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler J-P (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res 106:3157–3166

    CAS  Google Scholar 

  • Lenz R, Selige T, Seufert G (1997) Scaling up the biogenic emissions from test sites at Castelporziano. Atmos Environ 31:239–250

    CAS  Google Scholar 

  • Lerdau M, Dilts SB, Westberg H, Lamb BK, Allwine EJ (1994) Monoterpene emission from ponderosa pine. J Geophys Res 99:16609–16615

    CAS  Google Scholar 

  • Lerdau M, Matson P, Fall R, Monson R (1995) Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 76:2640–2647

    Google Scholar 

  • Li Z, Sharkey TD (2013a) Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ 36:429–437. doi:10.1111/j.1365-3040.2012.02584.x:1-9

    PubMed  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013b) Molecular and pathway controls of volatile organic carbon emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Li XC, Schuler MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–715

    PubMed  CAS  Google Scholar 

  • Li Z, Ratliff EA, Sharkey TD (2011) Effect of temperature on postillumination isoprene emission in oak and poplar. Plant Physiol 155:1037–1046

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    PubMed  CAS  Google Scholar 

  • Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540

    Google Scholar 

  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373

    Google Scholar 

  • Llusià J, Peñuelas J, Ogaya R, Alessio G (2010) Annual and seasonal changes in foliar terpene content and emission rates in Cistus albidus L. submitted to soil drought in Prades forest (Catalonia, NE Spain). Acta Physiol Plant 32:387–394

    Google Scholar 

  • Loivamäki M, Holopainen JK, Nerg A-M (2004) Chemical changes induced by methyl jasmonate in oilseed rape grown in the laboratory and in the field. J Agric Food Chem 52:7607–7613

    PubMed  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 115:154–166

    Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531

    CAS  Google Scholar 

  • Loreto F, Sharkey TD (1993) On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189:420–424

    CAS  Google Scholar 

  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Fabozzi C, Tricoli D (1996) Influence of environmental factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiol 110:267–275

    PubMed  CAS  Google Scholar 

  • Loreto F, Nascetti P, Graverini A, Mannozzi M (2000) Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, Pinus pinea. Funct Ecol 14:589–595

    Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

    Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    PubMed  CAS  Google Scholar 

  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK (2007) The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant Cell Environ 30:662–669

    PubMed  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–316

    PubMed  CAS  Google Scholar 

  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler J-P (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:138–151

    Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Model 131:161–174

    CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    PubMed  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    PubMed  CAS  Google Scholar 

  • Monson RK, Jaeger CH, Adams WWI, Driggers EM, Silver GM, Fall R (1992) Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    PubMed  CAS  Google Scholar 

  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R (1994) Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99:260–270

    Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    PubMed  CAS  Google Scholar 

  • Müller J-F, Stavrakou T, Wallens S, De Smedt I, Van Roozendael M, Potosnak MJ, Rinne J, Munger B, Goldstein A, Guenther AB (2008) Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmos Chem Phys 8:1329–1341

    Google Scholar 

  • Muraro D, Byrne HM, King JR, Bennett MJ (2012) Mathematical modeling plant signalling networks. Math Model Nat Phenomen 7:32–48

    Google Scholar 

  • Niinemets Ü (2004) Costs of production and physiology of emission of volatile leaf isoprenoids. In: Hemantaranjan A (ed) Advances in plant physiology. Scientific Publishers, Jodhpur, pp233–268

    Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant Cell Environ 30:1052–1071

    PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010a) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 115:145–153

    Google Scholar 

  • Niinemets Ü (2010b) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639

    Google Scholar 

  • Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob Biogeochem Cycle 16:1110. doi: 1110.1029/2002GB001927

    Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res Atmos 108:4208. doi:10.1029/2002JD002620

    Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    CAS  Google Scholar 

  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002a) Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 153:243–256

    CAS  Google Scholar 

  • Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002b) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002c) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–276

    CAS  Google Scholar 

  • Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physico-chemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic capacity and internal mesophyll conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010a) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    CAS  Google Scholar 

  • Niinemets Ü, Copolovici L, Hüve K (2010b) High within-canopy variation in isoprene emission potentials in temperate trees: Implications for predicting canopy-scale isoprene fluxes. J Geophys Res Biogeosci 115, G04029

    Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn M, Noe S, Peñuelas J, Staudt M (2010c) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    CAS  Google Scholar 

  • Niinemets Ü, Ciccioli P, Noe SM, Reichstein M (2013) Scaling BVOC emissions from leaf to canopy and landscape: how different are predictions based on different emission algorithms? In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Ohta K (1986) Diurnal and seasonal variations in isoprene emission from live oak. Geochem J 19:269–274

    CAS  Google Scholar 

  • Ormeño E, Gentner DR, Fares S, Karlik J, Park JH, Goldstein AH (2010) Sesquiterpenoid emissions from agricultural crops: correlations to monoterpenoid emissions and leaf terpene content. Environ Sci Technol 44:3758–3764

    PubMed  Google Scholar 

  • Owen SM, Peñuelas J (2005) Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426

    PubMed  CAS  Google Scholar 

  • Owen SM, Peñuelas J (2006) Response to Pichersky et al.: plant volatile isoprenoids and their opportunistic functions. Trends Plant Sci 11:424

    Google Scholar 

  • Owen S, Boissard C, Street RA, Duckham SC, Csiky O, Hewitt CN (1997) Screening of 18 Mediterranean plant species for volatile organic compound emissions. Atmos Environ 31:101–117

    CAS  Google Scholar 

  • Owen SM, MacKenzie AR, Stewart H, Donovan R, Hewitt CN (2003) Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecol Appl 13:927–938

    Google Scholar 

  • Palmer PI, Jacob DJ, Fiore AM, Martin RV, Chance K, Kurosu TP (2003) Mapping isoprene emissions over North America using formaldehyde column observations from space. J Geophys Res 108:4180

    Google Scholar 

  • Palmer PI, Abbot DS, Fu T-M, Jacob DJ, Chance K, Kurosu TP, Guenther A, Wiedinmyer C, Stanton JC, Pilling MJ, Pressley S, Lamb B, Sumner AL (2006) Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res 111:D12315. doi:10.1029/2005JD006689

    Google Scholar 

  • Paoletti E, Seufert G, Della Rocca G, Thomsen H (2007) Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring. Environ Pollut 147:516–524

    PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1998) Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521–526

    Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    PubMed  CAS  Google Scholar 

  • Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Mahli Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156

    CAS  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109

    PubMed  Google Scholar 

  • Pier PA, McDuffie C (1997) Seasonal isoprene emission rates and model comparisons using whole-tree emissions from white oak. J Geophys Res 102:23963–23972

    CAS  Google Scholar 

  • Pokorska O, Dewulf J, Amelynck C, Schoon N, ĸimpraga M, Steppe K, Van Langenhove H (2012) Isoprene and terpenoid emissions from Abies alba: identification and emission rates under ambient conditions. Atmos Environ 59:501–508

    CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Change Biol 17:1595–1610

    Google Scholar 

  • Priemé A, Knudsen TB, Glasius M, Christensen S (2000) Herbivory by the weevil, Strophosoma melanogrammum, causes several fold increase in emission of monoterpenes from young Norway spruce (Picea abies). Atmos Environ 34:711–718

    Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009) Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Laisk A, Niinemets Ü (2011) Induction of a longer term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions. Plant Physiol 156:816–831

    PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Röse USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves. A systemic response of living plants to caterpillar damage. Plant Physiol 111:487–495

    PubMed  Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK (2004) Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate. Plant Biol 6:12–21

    PubMed  CAS  Google Scholar 

  • Ruuskanen TM, Kolari P, Bäck J, Kulmala M, Rinne J, Hakola H, Taipale R, Raivonen M, Altimir N, Hari P (2005) On-line field measurements of monoterpene emissions from Scots pine by proton-transfer-reaction mass spectrometry. Boreal Environ Res 10:553–567

    CAS  Google Scholar 

  • Sanadze GA (1964) Conditions for diene C5H8 (isoprene) emission from leaves. Fiziol Rast (Sov Plant Physiol Engl Transl) 2:49–52

    Google Scholar 

  • Sanadze GA (2004) Biogenic isoprene (a review). Russ J Plant Physiol 51:729–741

    CAS  Google Scholar 

  • Sanadze GA, Kalandaze AN (1966) Light and temperature curves of the evolution of C5H8. Fiziol Rast (Sov Plant Physiol Engl Transl) 13:458–461

    CAS  Google Scholar 

  • Schnitzler J-P, Lehning A, Steinbrecher R (1997) Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modelling isoprene emission rates. Bot Acta 110:240–243

    CAS  Google Scholar 

  • Schnitzler J-P, Louis S, Behnke K, Loivamäki M (2010) Poplar volatiles – biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids. Plant Biol 12:302–316

    PubMed  CAS  Google Scholar 

  • Schuh G, Heiden AC, Hoffmann T, Kahl J, Rockel P, Rudolph J, Wildt J (1997) Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J Atmos Chem 27:291–318

    CAS  Google Scholar 

  • Schurgers G, Arneth A, Holzinger R, Goldstein A (2009) Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos Chem Phys 9:3409–3423

    CAS  Google Scholar 

  • Schürmann W, Ziegler H, Kotzias D, Schönwitz R, Steinbrecher R (1993) Emission of biosynthesized monoterpenes from needles of Norway spruce. Naturwissenschaften 80:276–278

    Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    PubMed  CAS  Google Scholar 

  • Smith EL (1937) The influence of light and carbon dioxide on photosynthesis. J Gen Physiol 20:807–830

    PubMed  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440

    PubMed  CAS  Google Scholar 

  • Staudt M, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (Quercus ilex). Naturwissenschaften 82:89–92

    CAS  Google Scholar 

  • Staudt M, Bertin N, Hansen U, Seufert G, Ciccioli P, Foster P, Frenzel B, Fugit JL (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31:145–156

    CAS  Google Scholar 

  • Staudt M, Bertin N, Frenzel B, Seufert G (2000) Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees – implications for emission modelling. J Atmos Chem 35:77–99

    CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relations to structural and ecophysiological parameters. Tree Physiol 21:437–445

    PubMed  CAS  Google Scholar 

  • Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res 107:4602–4608

    Google Scholar 

  • Staudt M, Joffre R, Rambal S (2003) How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. New Phytol 158:61–73

    CAS  Google Scholar 

  • Steinbrecher R, Hauff K, Rabong R, Steinbrecher J (1997) Isoprenoid emission of oak species typical for the Mediterranean area: source strength and controlling variables. Atmos Environ 31:79–88

    CAS  Google Scholar 

  • Steinbrecher R, Hauff K, Hakola H, Rössler J (1999) A revised parameterisation for emission modelling of isoprenoids for boreal plants. In: Laurila T, Lindfors V (eds) Biogenic VOC emissions and photochemistry in the boreal regions of Europe: Biphorep final report contract No ENV4-CT95-0022 air pollution research report No 70, Office for Official Publications of the European Communities, Luxembourg, pp 29–44

    Google Scholar 

  • Steindel F, Beauchamp J, Hansel A, Kesselmeier J, Kleist E, Kuhn U, Wisthaler A, Wildt J (2005) Stress induced VOC emissions from mildew infested oak. Geophys Res Abstr 7:EGU05-A-03010

    Google Scholar 

  • Strömvall AM, Petersson G (1991) Conifer monoterpenes emitted to air by logging operations. Scand J For Res 6:253–258

    Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440

    Google Scholar 

  • Tenhunen JD, Weber JA, Yocum CS, Gates DM (1976) Development of a photosynthesis model with an emphasis on ecological applications. II. Analysis of a data set describing the P m surface. Oecologia 26:101–119

    Google Scholar 

  • Thaler JS, Karban R, Ullman DE, Boege K, Bostock RM (2002) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235

    Google Scholar 

  • Tingey DT (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant 47:112–118

    CAS  Google Scholar 

  • Tingey D, Manning M, Grothaus L, Burns W (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 65:797–801

    PubMed  CAS  Google Scholar 

  • Tingey DT, Evans R, Gumpertz M (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152:565–570

    CAS  Google Scholar 

  • Toome M, Randjärv P, Copolovici L, Niinemets Ü, Heinsoo K, Luik A, Noe SM (2010) Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232:235–243

    PubMed  CAS  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  Google Scholar 

  • Trowbridge AM, Stoy PC (2013) BVOC-mediated plant-herbivore interactions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK (2012) Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS One 7:e32387

    PubMed  CAS  Google Scholar 

  • von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant- herbivore interactions? Plant J 46:948–960

    Google Scholar 

  • Vu TT, Vohradsky J (2007) Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucl Acids Res 35:279–287

    PubMed  CAS  Google Scholar 

  • Vuorinen T, Nerg A-M, Vapaavuori E, Holopainen JK (2005) Emission of volatile organic compounds from two silver birch (Betula pendula Roth.) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmos Environ 39:1185–1197

    CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Meier ME, Westphal MM, Sharkey TD (2008) Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. Plant Cell Environ 31:258–267

    PubMed  CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947

    PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200

    Google Scholar 

  • Yip KY, Alexander RP, Yan KK, Gerstein M (2010) Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One 5:e8121

    PubMed  Google Scholar 

  • Zimmer W, Brüggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler J-P (2000) Process-based modelling of isoprene emission by oak leaves. Plant Cell Environ 23:585–595

    CAS  Google Scholar 

Download references

Acknowledgements

The work of ÜN on volatile isoprenoid emission has been sponsored by the Estonian Research Council (Plant stress in changing climates), the Estonian Science Foundation (grant 9253), the European Science Foundation (Eurocores project A-BIO-VOC), the European Commission through European Regional Fund (the Center of Excellence in Environmental Adaptation) and European Research Council (advanced grant 322603, SIP-VOL+).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Grote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grote, R., Monson, R.K., Niinemets, Ü. (2013). Leaf-Level Models of Constitutive and Stress-Driven Volatile Organic Compound Emissions. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_12

Download citation

Publish with us

Policies and ethics