Skip to main content

Soil Carbon and Biofuels: Multifunctionality of Ecosystem Services

  • Chapter
  • First Online:
Ecosystem Services and Carbon Sequestration in the Biosphere

Abstract

Biofuels can be solid, liquid or gaseous and can be made from various biomass resources (or feedstocks). Biofuels produced today for the transportation sector are mainly made from oil crops (biodiesel) or sugar and starch crops (ethanol), of which many are annual crops. Future generation biofuels may use lignocellulosic biomass from trees and grasses, all perennial plants, as raw material.

The impact of biofuels on soil carbon (C) (i.e., soil organic carbon, SOC) depends on the characteristics of the crop, the management system and the previous land use. Soils under cultivation of annual crops such as sugar beet (Beta vulgaris), wheat (Triticum aestivum) and rapeseed (Brassica napus) experience a loss of soil C unless a system of reduced cultivation intensity is in place. Residues from annual crops, e.g., straw, can help to maintain soil C stocks if left in the field after harvest but are also deemed a low-cost resource for biofuels that does not require land for production. For corn (Zea mays), not more than 25 ;% of the residue biomass (corncobs) should be removed for energetic use if the soil C level is to be maintained. Under perennial crops soil carbon may accumulate at about 1 Mg C ha−1 annually.

Land-use change for bioenergy production has potentially the strongest impact of all management measures on soil C. In the most severe case of converting rainforest to oil palm (Elaeis guineensis) plantations for biodiesel production, it is estimated that about 25–170 Mg soil C are lost when the rainforest grows on mineral soil and more that 700 Mg C when the rainforest grows on peatland, the latter resulting in a carbon dioxide (CO2) emission payback time of more than 400 years. On the other hand, more than 10 Mg C ha−1 can be accumulated if imperata (Imperata cylindrica) grassland is converted to oil palm plantations.

It is concluded that depending on the type of cropping system under which biomass for biofuels is produced the effect on soil C can be positive (i.e., an increase or maintenance of soil C stocks) or negative (i.e., a decrease in soil C stocks). Positive effects can be expected where biomass is produced in perennial systems or where annual crops are grown in low-tillage intensity systems and not more than 25 % of the residue mass is removed. Strong negative effects can be expected where land-use changes result in a reduction of soil C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BtL:

biomass-to-liquid

C:

carbon

°C:

degrees Celsius

CO2 :

carbon dioxide

DME:

dimethyl ether

FT:

Fischer Tropsch

GHG:

greenhouse gases

Ha:

hectare

Mg:

mega gram (equivalent to metric ton)

SOC:

soil organic carbon

SRC:

short rotation coppice

R&D:

Research and Development

w/w:

weight by weight

y:

year

References

  • Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1:75–96

    Article  CAS  Google Scholar 

  • Andrews S (2006) White Paper – Crop residue removal for biomass energy production: effects on soils and recommendations. http://soils.usda.gov/sqi/management/files/agforum_residue_white_paper.pdf. Accessed 23 Oct 2011

  • Blair N, Faulkner RD, Till AR, Körschens M, Schulz E (2006a) Long-term management impacts on soil C, N and physical fertility, part II: Bad Lauchstadt static and extreme FYM experiments. Soil Tillage Res 91:39–47

    Article  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Poulton PR (2006b) Long-term management impacts on soil C, N and physical fertility, part I: Broadbalk experiment. Soil Tillage Res 91:30–38

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141:355–362

    Article  CAS  Google Scholar 

  • Boomsma CR, Santini JB, West TD, Brewer JC, McIntyre LM, Vyn TJ (2010) Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil Tillage Res 106:227–240

    Article  Google Scholar 

  • Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 62:23–28. doi:10.111/j.1365–2389.2010.01315.x

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670. doi:10.1111/j.1365–2486.2010.02336.x

    Article  Google Scholar 

  • Ehleringer JR, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73:555–559

    Article  PubMed  CAS  Google Scholar 

  • Elbersen HW, van Dam JEG, Bakker RR (2005) Oil palm by-products as a biomass source: availability and sustainability. In: Proceedings of the 14th European biomass conference, Paris, 17–21 Oct 2005, pp 511–514

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Article  PubMed  CAS  Google Scholar 

  • FNR (Fachagentur Nachwachsende Rohstoffe) (2011) Palmölnutzung weltweit. http://www.nachwachsenderohstoffe.de/uploads/media/FNR510_presse_palmoelnutzung_300dpi_rgb_01.jpg. Accessed 23 Oct 2011

  • Fritsche UR, Hennenberg K, Hünecke K (2010) The “iLUC Factor” as a means to hedge risks of GHG emissions from indirect land use change – working paper. Öko-Institut e.V., Darmstadt

    Google Scholar 

  • Fritsche UR, Wiegmann K (2008) Treibhausgasbilanzen und kumulierter primärenergieverbrauch von bioenergie-konversionspfaden unter berücksichtigung möglicher landnutzungsänderungen. Expertise im auftrag des WBGU. Öko-Institut e.V, Darmstadt

    Google Scholar 

  • Germer J, Sauerborn J (2008) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10:697–716. doi:10.1007/s10668–006–9080–1

    Article  Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • IEA (International Energy Agency) (2011) Technology roadmap – biofuels for transport. OECD/IEA, Paris

    Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford

    Google Scholar 

  • Johnson JM-F, Almarras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • JRC (Joint Research Centre) (2009) cited in EC (2010) Report from the Commission to the Council and the European Parliament on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling, Publications Office, Luxembourg

    Google Scholar 

  • Kravchenko AG, Thelen KD (2007) Effect of winter wheat crop residue on no-till corn growth and development. Agron J 99:549–555

    Article  Google Scholar 

  • Kumar A, Sharma S (2008) Evaluation of multi-purpose oil seed crop for industrial uses (jatropha curcas S.): a review. Ind Crop Prod 28(1):1–10

    Article  CAS  Google Scholar 

  • Lange J-P, Lewandowski I, Ayoub PM (2010) Cellulosic biofuels: a sustainable option for transportation. In: Harmsen J, Powell JB (eds) Sustainable development in the process industries. Wiley, Hoboken, pp 171–198

    Chapter  Google Scholar 

  • Lattanzi FA (2010) C3/C4 grasslands and climate change. In: Proceedings of the 23rd general meeting of the European Grassland Federation, Kiel, 29 Aug–2 Sept 2010, pp 3–13

    Google Scholar 

  • Lewandowski I, Böhmel C, Vetter A, Hartmann H (2009) Landwirtschaftlich produzierte lignocellulosepflanzen, ölpflanzen, zucker- und stärkepflanzen. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus biomasse – grundlagen, techniken und verfahren, 2nd edn. Springer, Heidelberg, pp 88–134

    Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in Europe and the U.S. Biomass Bioenergy 25(4):335–361

    Article  Google Scholar 

  • Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6:163–177

    Article  Google Scholar 

  • Lezovic G (2011) Befragung zu Bodenbearbeitungsverfahren in Deutschland: Wo stehen wir derzeit? Landwirtschaft ohne Pflug, 9/10:21–27

    Google Scholar 

  • LfL (Bayerische Landesanstalt für Landwirtschaft) (2007) Biogashandbuch Bayern – Materialienband – Kap. 1.1–1.5, Stand Juli 2007. http://www.lfu.bayern.de/abfall/biogashandbuch/index.htm

  • LTZ (Landwirtschaftliches Technologiezentrum Augustenberg) (2008) Inhaltsstoffe von Gärprodukten und Möglichkeiten zu ihrer geordneten pflanzenbaulichen Verwertung. Projektbericht

    Google Scholar 

  • Mittelbach M, Remschmidt C (2010) Biodiesel: the comprehensive handbook, 4th edn. Martin Mittelbach, Graz, Am Blumenhang 27, A-8010

    Google Scholar 

  • Müller-Sämann K, Hölscher T (2010) Miscanthus und Kohlenstoffbindung in ehemaligen Ackerböden. In: Pude R (ed) “Miscanthus – Netzwerke und Visionen”, Tagungsband 6. Internationale Miscanthus-Tagung, Österreich, 24–26 Nov 2010, pp 17–19

    Google Scholar 

  • OECD (2011) OECD-FAO Agricultural Outlook 2011–2020 http://www.oecd.org/document/0/0,3746,en_36774715_36775671_47877696_1_1_1_1,00.html

  • Paustian K, Porton WJ, Persson J (1992) Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 56:1173–1179

    Article  Google Scholar 

  • Petz (2000) Auswirkungen von Biogasgülle-Düngung auf Bodenfauna und einige Bodeneigenschaften. Eine Freilandstudie an vier Standorten in Oberösterreich. Im Auftrag vom Amt für Oberösterreichsche Landesregierung

    Google Scholar 

  • Poeplau C, Don A, Versterdal L, Leifeld J, van Wesemaels B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone –carbon response functions as a model approach. Glob Chang Biol 17:2415–2427

    Article  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  CAS  Google Scholar 

  • Rehm S, Espig G (1984) Die Kulturpflanzen der Tropen und Subtropen. Verlag Eugen Ulmer, Stuttgart, 2. Aufl. 1985

    Google Scholar 

  • Renner A, Zelt T, Gerteiser S (2008) In GEXSI LLP (Eds.): The Global Exchange for Social Investment. Global market study on jatropha. Final report prepared for the World Wildlife Fund (WWF), London/Berlin

    Google Scholar 

  • Rockström J (2003) Water for food and nature in drought–prone tropics: vapour shift in rain-fed agriculture. Philos Trans R Soc Lond B 358(1140):1997–2009. doi:10.1098/rstb.2003.1400

    Article  Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. 1. Leaf nitrogen, growth and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:954–958

    Article  PubMed  CAS  Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20(3):229–236

    Article  CAS  Google Scholar 

  • SoCo Project Team (2009) Final report on the project ‘Sustainable Agriculture and Soil Conservation (SoCo)’. Louwagie G, Gay SH, Burrell A (eds), http://soco.jrc.ec.europa.eu/

  • Terhoeven-Urselmans T, Scheler E, Raubuch M, Ludwig B, Joergensen RG (2009) CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Appl Soil Ecol 42:297–302

    Article  Google Scholar 

  • Triplett GB, Dick WA (2008) No-tillage crop production: a revolution in agriculture. Agron J 100:153–165

    Article  Google Scholar 

  • Umweltbundesamt (2010) National inventory report for the German greenhouse gas inventory 1990–2008, submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2010, Climate Change 04/2010, http://www.umweltdaten.de/publikationen/fpdf-l/3958.pdf

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Chang Biol 8(6):519–530

    Article  Google Scholar 

  • Widmann B, Thuneke K, Remmele D, Müller-Langer F (2009) In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus biomasse, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Zeri M, Anderson-Teixeira K, Hickman G, Masters M, DeLucia E, Bernacchi CJ (2011) Carbon exchange by establishing biofuel crops in central Illinois. Agric Ecosyst Environ 144:319–329

    Article  CAS  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Illustration of plants by Uli Schmidt http://www.uli-schmidt-paintings.com/. Text edited by Nicole Gaudet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Lewandowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewandowski, I. (2013). Soil Carbon and Biofuels: Multifunctionality of Ecosystem Services. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_14

Download citation

Publish with us

Policies and ethics