Skip to main content

Abiotic Biological Control Agents for Crop Disease Management

  • Chapter
  • First Online:
Biological Management of Diseases of Crops

Part of the book series: Progress in Biological Control ((PIBC,volume 15))

Abstract

Biological management of crop diseases can be achieved to the desired level by judiciously integrating the biotic and abiotic agents with different mechanisms of action on the target pathogen(s). A wide range of sources of abiotic agents has provided the materials for enhancing the activities of biotic biocontrol agents, resulting in effective disease suppression. Addition of organic amendments such as composts and green manures is known to increase the population and activities of microbial communities that positively influence plant growth and protection offered to plants against microbial plant pathogens. The biosurfactant function of brassica crop amendments has been demonstrated to reduce the incidence and severity of soilborne diseases. Plant extracts and secondary metabolites of plants, like essential oils are effective in reducing pathogen population and disease incidence of soilborne and foliar diseases. Fumigation with thymol has the potential for use as an alternative to chemicals used for the management of postharvest diseases. Naturally-derived compounds like chitosan have high level of biocontrol potential, primarily by enhancing resistance of plants and harvested produce against microbial pathogens. Plant activators such as salicylic acid and acibenzolar-S-methyl (ASM) have been demonstrated to possess marked potential for protecting plants against a wide range of microbial plant pathogens. Phosphates are inexpensive inorganic chemicals that may increase the level of resistance in treated plants to diseases. Likewise, silicon is another inorganic source of resistance inducers, deserving wider exploitation for disease management. Abiotic biocontrol agents are available in large numbers, awaiting recognition by discerning discoverers for realizing their potential.

Biological management of crop diseases has been demonstrated to be ecofriendly and to have the potential to reduce or replace the use of chemicals against diseases caused by microbial plant pathogens. A wide range of materials of plant and animal origin have been evaluated for their efficacy in suppressing the development of microbial plant pathogens and the diseases incited by them. Some synthetic compounds also have been tested for their potential. Organic or inorganic compounds from naturally-derived sources and they have been demonstrated to have potential for effective biocontrol of crop diseases, when applied in the soil and/ or on the seeds and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Al-Dahamani J, Sahin F, Hoitnik HAJ, Milller SA (2002) Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis 86:156–161

    Article  CAS  Google Scholar 

  • Abbasi PA, Conn KL, Lazarovits G (2004) Suppression of Rhizoctonia and Pythium damping-off of radish and cucumber seedlings by addition of fish emulsion to peat mix or soil. Can J Plant Pathol 26:177–187

    Article  Google Scholar 

  • Abdel-Monanini MF, Abo-Elyousr KAM, Morsy KM (2011) Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis). Crop Prot 30:185–191

    Article  Google Scholar 

  • Abo-Elyousr KAM, El-Hendawy HH (2008) Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Prot 27:1118–1124

    Article  CAS  Google Scholar 

  • Abo-Elyousr KAM, Ibrahim YE, Balabel NM (2012) Induction of disease defensive enzymes in response to treatment with acibenzolar-S-methyl (ASM) and Pseudomonas fluorescens Pf2 and inoculation with Ralstonia solanacearum race 3, biovar (phylotype II). J Phytopathol 160:382–389

    Article  CAS  Google Scholar 

  • Adandonon A, Aveling TAS, Labuschagne N, Tami M (2006) Biocontrol agents in combination with Moringa oleifera extract for integrated control of Sclerotium-caused cowpea damping-off and stem rot. Eur J Plant Pathol 115:409–418

    Article  Google Scholar 

  • Ahn IP, Kim S, Kang S, Suh SC, Lee YH (2005) Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Ajay D, Baby UI (2010) Induction of systemic resistance to Exobasidium vexans in tea through SAR elicitors. Phytoparasitica 38:53–60

    Article  CAS  Google Scholar 

  • Alabouvette C, Höper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soilborne pathogens. Soil Biochem 9:371–413

    Google Scholar 

  • Altamiranda EAG, Andreu AB, Daleo GR, Olivieri FP (2008) Effect of ß-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout potato. Australas Plant Pathol 37:421–427

    Article  CAS  Google Scholar 

  • Amiri A, Bompeix G (2011) Control of Penicillium expansum with potassium phosphate and heat treatment. Crop Prot 30:222–227

    Article  CAS  Google Scholar 

  • Anfoka GH (2000) Benzo-(1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill cv.Vollendung) to Cucumber mosaic virus. Crop Prot 19:401–405

    Article  CAS  Google Scholar 

  • Anthony S, Abeywickrama K, Wijeratnam WS (2003) The effect of spraying essential oils of Cymbopogon nardus, Cymbopogon flexuous and Ocimum basilicum on postharvest diseases and storage life of Embul banana. J Hortic Sci Biotechnol 78:780–785

    CAS  Google Scholar 

  • Arras G, Usai M (2001) Fungitoxicity of 12 essential oils against four postharvest citrus pathogens: chemical analysis of Thymus capitatus oil and its effect in sub-atmospheric pressure conditions. J Food Prot 64:1025–1029

    CAS  PubMed  Google Scholar 

  • Aryantha IP, Cross R, Guest DI (2000) Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology 90:775–782

    Article  CAS  PubMed  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert J, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Aziz A, Tritel-Azis P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Badawy MEI, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51:110–117

    Article  CAS  Google Scholar 

  • Bajpai VK, Cho MJ, Kang SC (2010) Control of plant pathogenic bacteria of Xanthomonas spp. by the essential oil and extracts of Metasequoia glyptostroboides Mik ex Hu in vitro and in vivo. J Phytopathol 158:479–486

    Article  CAS  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Baker CJ, Orlandi EW, Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102:1341–1344

    CAS  PubMed  Google Scholar 

  • Balestra GM, Heydari A, Ceccarelli D, Ovidi E, Quattrucci A (2009) Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot 28:807–811

    Article  Google Scholar 

  • Bally R, Elmerich C (2005) Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer, Dordrecht, pp 171–190

    Google Scholar 

  • Barilli E, Sillero JC, Rubiales D (2010) Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. J Phytopathol 158:30–34

    Article  CAS  Google Scholar 

  • Barrera-Necha L, Bautista-Banos L, Bravo-Luna L, Bermudez-Torres K, Jimenez-Estrada M, Reyes-Chilpa R, García-Suarez FJ (2003) Anitifungal activity against postharvest fungi by extracts and compounds of Pithecellobium dulce seeds (Huamuchil) Acta Hortic 628

    Google Scholar 

  • Baysal Ö, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753

    Article  CAS  Google Scholar 

  • Baysal Ö, Gürsoy YZ, Örnek H, Duru A (2005) Induction of oxidants in tomato leaves treated with DL-ß-aminobutyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. Eur J Plant Pathol 112:361–369

    Article  CAS  Google Scholar 

  • Bengtsson M, Wulff E, Jorgensen HJL, Pham A, Lubeck M, Hockenhyll J (2009) Comparative studies on the effects of a yucca extract and acibenzolar-S-methyl (ASM) on inhibition of Venturia inaequalis in apple leaves. Eur J Plant Pathol 124:187–198

    Article  CAS  Google Scholar 

  • Bi Y, Tian SP, GuoYR GYH, Qin GZ (2006) Sodium silicate reduced postharvest decay on Hami melons: induced resistance and fungicide effects. Plant Dis 90:279–283

    Article  CAS  Google Scholar 

  • Bi Y, Jiang H, Hausbeck MK, Hao JJ (2012) Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Dis 96:797–803

    Article  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Boava LP, Kuhu OJ, Pascholatin SF, Di Piero RM, Furtado EL (2009) Effect of acibenzolar-S-methyl and Saccharomyces cerevisiae on the activation of Eucalyptus defences against rust. Australas Plant Pathol 38:594–602

    Article  CAS  Google Scholar 

  • Bokshi AI, Morris SC, Deverall BJ (2003) Effects of benzothiadiazole and acetylsalicylic acid on ß-1,3-glucanase activity and disease resistance in potato. Plant Pathol 52:22–27

    Article  CAS  Google Scholar 

  • Borges AA, Cools HJ, Lucas JA (2003) Menadione sodium bisuphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol 52:429–436

    Article  CAS  Google Scholar 

  • Bosquez-Molina E, Ronquillo-de-Jesus E, Bautista-Baños S, Verde-Calvo JR, Morales-López J (2010) Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biol Technol 57:132–137

    Article  CAS  Google Scholar 

  • Bowen P, Menzies J, Ehret D (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912

    CAS  Google Scholar 

  • Bowers JH, Locke JC (1998) Effect of botanical extracts on the population density of Verticillium dahliae in soil. Phytopathology 88:S128 (Abst)

    Google Scholar 

  • Bowers JH, Locke JC (2000) Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis 84:300–305

    Article  Google Scholar 

  • Bowers JH, Locke JC (2004) Effect of formulated plant extracts and oils on population density of Phytophthora nicotianae in soil and control of Phytophthora blight in the greenhouse. Plant Dis 88:11–16

    Article  CAS  Google Scholar 

  • Boyle C, Walters DR (2005) Induction of systemic protection against rust infection in broad bean by saccharin: effects on plant growth and development. New Phytol 167:607–612

    Article  CAS  PubMed  Google Scholar 

  • Boyle C, Walters DR (2006) Saccharin-induced protection against powdery mildew in barley: effects on growth and phenylpropanoid metabolism. Plant Pathol 55:82–91

    Article  CAS  Google Scholar 

  • Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonas suppress Fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905

    Article  CAS  PubMed  Google Scholar 

  • Brisset MN, Cesborn S, Pauling JP (2000) Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. Eur J Plant Pathol 106:529–536

    Article  CAS  Google Scholar 

  • Broadbent P, Baker K (1974) Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust J Agric Res 25:121–137

    Article  Google Scholar 

  • Brock PM, Inwood JRB, Deverall BJ (1994) Systemic induced resistance to Alternaria macrospora in cotton (Gossypium hirsutum). Aust Plant Pathol 23:81–85

    Article  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Makovitzki A, Shai Y, Chet I, Viterbo A (2009) Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens. Appl Environ Microbiol 75:5373–5379

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ, McCaffrey JP, Auld DL, Williams J III (1991) Allelochemicals produced during glucosinolate degradation in soil. J Chem Ecol 17:2021–2034

    Article  CAS  Google Scholar 

  • Bulluck LR III, Ristaino JB (2002) Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities and yield of processing tomatoes. Phytopathology 92:181–189

    Article  CAS  PubMed  Google Scholar 

  • Buonaurio R, Scarponi L, Ferrara M, Sidoti P, Bertona A (2002) Induction of systemic acquired resistance in pepper plants by acibenzolar-S-methyl against bacterial spot disease. Eur J Plant Pathol 108:41–49

    Article  CAS  Google Scholar 

  • Buzi A, Chilosi G, Magro P (2004) Induction of resistance in melon seedlings against soilborne pathogens by gaseous treatments with methyl jasmonate and ethylene. J Phytopathol 152:491–497

    Article  CAS  Google Scholar 

  • Caccioni DRL, Guizzardi M (1994) Inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. J Ess Oil Res 6:173–179

    Article  CAS  Google Scholar 

  • Caccioni DRL, Tonini G, Guizzardi M (1994) Postharvest treatments with acetaldehyde vapors for Monilinia laxa (Aderh et Ruhl.) Honey control in stone fruits. In: Proceedings of environment and biotic factors in integrated plant disease control, Poznan, Poland, pp 185–187

    Google Scholar 

  • Caccioni DRL, Tonini G, Guizzardi M (1995) Antifungal activity of stone fruit aroma compounds against Monilinia laxa (Aderh et Ruhl.) Honey and Rhizopus stolonifer (Ehernb.) in vivo trials. J Plant Dis Prot 102:518–525

    CAS  Google Scholar 

  • Cao J, Jiang W, He H (2005) Induced resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against infection by Penicillium expansum by postharvest infiltration of acibenzolar-S-methyl. J Phytopathol 153:640–646

    Article  CAS  Google Scholar 

  • Cao J, Zeng K, Jiang W (2006) Enhancement of postharvest disease resistance in Ya Li pear (Pyrus bretschneideri) fruit by salicylic acid sprays on trees during fruit growth. Eur J Plant Pathol 114:363–370

    Article  CAS  Google Scholar 

  • Carisse O, Bernier J, Benhamou N (2003) Selection of biological agents from composts for control of damping-off of cucumber caused by Pythium ultimum. Can J Plant Pathol 25:258–267

    Article  Google Scholar 

  • Castillo S, Navarro D, Zapata PJ, Guillen F, Valero D, Serrano M, Martinez-Romero D (2010) Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biol Technol 57:183–188

    Article  CAS  Google Scholar 

  • Castro OL, Bach EE (2004) Increased production of ß-1,3-glucanase and proteins in Bipolaris sorokiniana pathosystem treated with commercial xanthan gum. Plant Physiol Biochem 42:165–169

    Article  CAS  PubMed  Google Scholar 

  • Chen M-H, Nelson EB (2012) Microbial-induced carbon competition in the spermosphere leads to pathogen and disease suppression in a municipal biosolids compost. Phytopathology 102:588–596

    Article  PubMed  Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zheng C, Wu X, Sun F, Wu T, Hayes M, Beer SV, Dong H (2008) Identification of specific fragments of HpaXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistane and enhance growth in plants. Phytopathology 98:781–791

    Article  CAS  PubMed  Google Scholar 

  • Chen L-H, Cui Y-Q, Yang X-M, Zhao D-K, Shen Q-R (2012a) An antifungal compound from Trichoderma harzianum SQR-T037 effectively controls Fusarium wilt of cucumber in continuously cropped soil. Aust Plant Pathol 41:239–245

    Article  CAS  Google Scholar 

  • Chen M-H, Jack AL, McGuire IC, Nelson EB (2012b) Seed-colonizing bacterial communities associated with the suppression of Pythium seedling disease in municipal biosolids compost. Phytopathology 102:478–489

    Article  CAS  PubMed  Google Scholar 

  • Chervin C, Westercamp P, Monteils G (2005) Ethanol vapours limit Botrytis development over the postharvest life of table grapes. Postharvest Biol Technol 36:319–322

    Article  CAS  Google Scholar 

  • Chervin C, Lavigne D, Westercamp P (2009) Reduction of gray mold development in table grapes by preharvest sprays with ethanol and calcium chloride. Postharvest Biol Technol 54:115–117

    Article  CAS  Google Scholar 

  • Chivasa S, Murphy AM, Naylor M, Carr JP (1997) Salicylic acid interferes with Tobacco mosaic virus replication via a novel salicylichydroxamic acid- sensitive mechanism. Plant Cell 9:547–557

    CAS  PubMed  Google Scholar 

  • Chu CL, Liu WT, Zhou T, Tsao R (1999) Control of postharvest gray mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Can J Plant Sci 79:685–689

    Article  CAS  Google Scholar 

  • Chu CL, Liu WT, Zhou T (2001) Fumigation of sweet cherries with low levels of thymol and acetic acid to reduce postharvest brown rot and blue mold rot. Fruits (Paris) 56:123–130

    Article  Google Scholar 

  • Chuankun X, Minghe M, Leming Z, Keqin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  CAS  Google Scholar 

  • Cohen Y (1994) ß-Aminobutyric acid induces systemic resistance against Pernospora tabacina. Physiol Mol Plant Pathol 44:273–288

    Article  CAS  Google Scholar 

  • Cohen Y, Niderman T, Mosinger E, Fluhr R (1994) Beta-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol 104:59–66

    CAS  PubMed  Google Scholar 

  • Cohen MF, Yamasaki H, Massola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Cohen Y, Rubin AE, Kilfin G (2010) Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-ß-aminobutyric acid (BABA). Eur J Plant Pathol 126:553–573

    Article  CAS  Google Scholar 

  • Colson-Hanks ES, Deverall BJ (2000) Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to Alternaria leaf spot in cotton. Plant Pathol 49:171–178

    Article  CAS  Google Scholar 

  • Conn KL, Tenuta M, Lazarovitis G (2005) Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid and ammonia toxicity. Phytopathology 95:28–35

    Article  PubMed  Google Scholar 

  • Conway WS, Sams CE (1983) Calcium infiltration of Golden Delicious apples and its effect on decay. Phytopathology 73:1068–1071

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Cook RJ, Rovira AD (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8:267–273

    Article  Google Scholar 

  • Cools HJ, Ishii H (2002) Pretreatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine lyase gene (PAL) for enhanced expression upon fungal attack. Physiol Mol Plant Pathol 61:273–280

    Article  CAS  Google Scholar 

  • Cooper P, Cornforth IS (1978) Volatile fatty acids in stored animal slurry. J Sci Food Agric 29:19–27

    Article  CAS  Google Scholar 

  • Coqueiro DSO, Maraschin M, Di Piero RM (2011) Chitosan reduces bacterial spot severity and acts in phenylpropanoid metabolism in tomato plants. J Phytopathol 159:488–494

    Article  CAS  Google Scholar 

  • Coram TE, Pang ECK (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4(6):647–666

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Barco AM, Goodwin PH, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653

    Article  CAS  Google Scholar 

  • Costa J, Menge J, Casale W (2000) Biological control of Phytophthora root rot of avocado with microorganism grown in organic mulch. Braz J Microbiol 31:239–246

    Article  Google Scholar 

  • Coventry E, Noble R, Mead A, Whipps JM (2005) Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes. Eur J Plant Pathol 111:101–112

    Article  Google Scholar 

  • Coventry E, Noble R, Mead A, Marin FR, Perez JA, Whipps JM (2006) Allium white rot suppression with composts and Trichoderma viride in relation to sclerotia viability. Phytopathology 96:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Cruz CA, Ramírez-Tec G, García-Sosa K, Escalante-Erosa F, Hill L, Osburn AE, Pena-Rodriguez LM (2010) Phytoanticipins from banana (Musa acuminata cv. Grande Naine) plants with antifungal activity against Mycosphaerella fijiensis, the causal agent of black Sigatoka. Eur J Plant Pathol 126:459–463

    Article  CAS  Google Scholar 

  • Csinos AS, Pappu HR, McPherson RM, Stephenson MG (2001) Management of Tomato spotted wilt virus in flue-cured tobacco with acibenzolar-S-methyl and imidacloprid. Plant Dis 85:292–296

    Article  CAS  Google Scholar 

  • Daayf F, Schmitt A, Bélanger RR (1997) Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachlinensis. Plant Physiol 113:719–727

    PubMed  Google Scholar 

  • Daayf F, Ongena M, Boulanger RR, Hadrami IE, Bélanger RR (2000) Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachlinensis. J Chem Ecol 26:1579–1593

    Article  CAS  Google Scholar 

  • Dann EK, Deverall BJ (2000) Activation of systemic disease resistance in pea by an avirulent bacterium or a benzothiadiazole, but not by a fungal leaf spot pathogen. Plant Pathol 49:324–332

    Article  CAS  Google Scholar 

  • Dann EK, Meuwly P, Métraux JP, Deverall BJ (1996) The effect of pathogen or chemical treatment on activities of chitinase and ß-1,3-glucanase and accumulation of salicylic acid in leaves of green bean Phaseolus vulgaris L. Physiol Mol Plant Pathol 49:307–319

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA, Pompodakis NE, Dinutria CI (2007) Efficacy of postharvest treatments with acibenzolar-S-methyl and methyl jasmonate against Botrytis cinerea in cut Freesia hybrida L. flowers. Australas Plant Pathol 36:332–340

    Article  CAS  Google Scholar 

  • Davis JR, Huisman OC, Everson DO, Nolte P, Sorenson H, Schneider AT (2010a) Ecological relationships of Verticillium wilt suppression of potato by green manures. Am J Potato Res 87:315–326

    Article  Google Scholar 

  • Davis JR, Huisman OC, Everson DO, Nolte P, Sorenson LH, Schneider AT (2010b) The suppression of Verticillium wilt of potato using corn as a green manure crop. Am J Potato Res 87:195–208

    Article  Google Scholar 

  • Daw BD, Zhang LH, Wang ZZ (2008) Salicylic acid enhances antifungal resistance to Magnaporthe grisea in rice plants. Australas Plant Pathol 37:637–644

    Article  CAS  Google Scholar 

  • de Capdeville G, Beer SV, Wilson CL, Aist JR (2002) Alternative disease control agents induce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. Phytopathology 92:900–908

    Article  PubMed  Google Scholar 

  • de Capdeville G, Beer SV, Watkins CB, Wilson CL, Tedeschi LO, Aist JR (2003) Pre- and post-harvest harpin treatments of apples induce resistance to blue mold. Plant Dis 87:39–44

    Article  Google Scholar 

  • De Corato U, Sharma N, Maccioni O, Zimardi F (2011) Suppressiveness of steam-exploded biomass of Micanthus sinensis var. giganteus against soilborne plant pathogens. Crop Prot 30:246–252

    Article  Google Scholar 

  • Debode J, Clewes E, De Becker G, Höfte M (2005) Lignin is involved in the reduction of Verticillium dahliae var. longisporum inoculum in soil by crop residue incorporation. Soil Biol Biochem 37:301–309

    Article  CAS  Google Scholar 

  • Dempsey DA, Wobbe KK, Klessig DF (1993) Resistance and susceptible responses of Arabidopsis thaliana to Turnip crinkle virus. Phytopathology 83:1021–1029

    Article  CAS  Google Scholar 

  • Deviah SP, Geetha HM, Shetty HS (2009) Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract. Crop Prot 28:783–791

    Article  Google Scholar 

  • Diab HG, Hu S, Benson DM (2003) Suppression of Rhizoctonia solani on Impatiens by enhanced microbial activity in composted swine waste-amended potting mixes. Phytopathology 93:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Dillon VM, Overton J, Grayer RJ, Harborne JB (1997) Differences in phytoalexin responses among rice cultivars of different resistance to blast. Phytochemistry 44:599–603

    Article  CAS  Google Scholar 

  • Ding J, Shi K, Zhou YH, Yu JQ (2009) Microbial community responses associated with the development of Fusarium oxysporum f.sp. cucumerinum after 24-epibrassinolide application to shoots and roots in cucumber. Eur J Plant Pathol 124:141–150

    Article  CAS  Google Scholar 

  • Dionne A, Tweddell RJ, Antoun H, Avis TJ (2012) Effect of non-aerated compost teas on damping-off pathogens of tomato. Can J Plant Pathol 34:51–57

    Article  Google Scholar 

  • Dobbs CG, Hinson WH (1953) A widespread fungistasis in soil. Nature 172:197–199

    Article  CAS  PubMed  Google Scholar 

  • Dong XN (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20:207–215

    Article  CAS  PubMed  Google Scholar 

  • Downer A, Menge J, Pond E (2001) Association of cellulolytic enzyme activities in Eucalyptus mulches with biological control of Phytophthora cinnamomi. Phytopathology 91:847–855

    Article  CAS  PubMed  Google Scholar 

  • Dukare AS, Prasanna R, Dubey SC, Nain L, Chaudhary V (2011) Evaluating novel microbe- amended composts as biocontrol agents in tomato. Crop Prot 30:436–442

    Article  Google Scholar 

  • Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk M, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australas Plant Pathol 35:581–591

    Article  CAS  Google Scholar 

  • Eikeno H, Stensvand A, Tronsmo AM (2003) Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Dis 87:345–350

    Article  Google Scholar 

  • Elkovich SD (1988) Terpenoids as models for new agrochemicals. ACS Symp Ser 380:2580–2610

    Google Scholar 

  • Elmer WH (2006) Effects of acibenzolar-S-methyl on the suppression of Fusarium wilt of cyclamen. Crop Prot 25:671–676

    Article  CAS  Google Scholar 

  • Faessel L, Nassr N, Lebeau T, Waltler B (2008) Effects of a plant defense inducer, acibenzolar-S-methyl, on hypocotyls rot of soybean caused by Rhizoctonia solani AG-4. J Phytopathol 156:236–242

    Article  CAS  Google Scholar 

  • Faize M, Faize L, Koike IM, Ishii H (2004) Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology 94:604–612

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Faize L, Ishii H (2009) Gene expression during acibenzolar-S-methyl-induced priming for potentiated responses to Venturia nashicola in Japanese pear. J Phytopathol 157:137–144

    Article  CAS  Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl 53:387–401

    Article  CAS  Google Scholar 

  • Fauteux A, Chein F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci USA 103:17554–17559

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Zheng X, Chen J, Yang Y (2008) Combination of cassia oil with magnesium sulphate for control of postharvest storage rots of cherry tomatoes. Crop Prot 27:112–117

    Article  CAS  Google Scholar 

  • Ferrandino FJ, Smith VL (2007) The effect of milk-based foliar sprays on yield components of field pumpkins with powdery mildew. Crop Prot 26:657–663

    Article  Google Scholar 

  • Fichtner EJ, Benson DM, Diab HG, Shew HD (2004) Abiotic and biological suppression of Phytophthora parasitica in a horticultural medium containing composted swine waste. Phytopathology 94:780–788

    Article  CAS  PubMed  Google Scholar 

  • Fofana B, McNally DJ, Labbé C, Boulanger R, Benhomou N, Seguin A, Bélanger RR (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pathol 61:121–132

    CAS  Google Scholar 

  • Fofana B, Benhamou N, McNally DJ, Labbé C, Séguin A, Bélanger RR (2005) Suppression of induced resistance in cucumber through disruption of the falvonoid pathway. Phytopathology 95:114–123

    Article  CAS  PubMed  Google Scholar 

  • Fortunato AA, Rodriguezs FA, do Nascimento KJT (2012) Physiological and biochemical aspects of resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology 160:957–966

    Article  CAS  Google Scholar 

  • Francis MI, Redondo A, Burns JK, Graham JH (2009) Soil application of imidacloprid and related SAR-inducing compounds produce effective and persistent control of citrus canker. Eur J Plant Pathol 124:283–292

    Article  CAS  Google Scholar 

  • French RC (1985) The bioregulatory action of flavor compounds on fungal spores and other propagules. Annu Rev Phytopathol 23:173–199

    Article  CAS  Google Scholar 

  • French-Monar RD, Rodrigues FA, Korndörfer GH, Datnoff LE (2010) Silicon suppresses Phytophthora blight development on bell pepper. J Phytopathol 158:554–560

    Article  CAS  Google Scholar 

  • Frey S, Carver TLW (1998) Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. J Phytopathol 146:239–245

    Article  CAS  Google Scholar 

  • Fugate KK, Ferrareze JP, Bolton MD, Deckard EL, Campbell LG (2012) Postharvest jasmonic acid treatment of sugar beet roots reduces rot due to Botrytis cinerea, Penicillium claviformae and Phoma betae. Postharvest Biol Technol 65:1–4

    Article  CAS  Google Scholar 

  • Garibaldi A, Gilardi G, Cogliati EE, Gullino ML (2012) Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce. Eur J Plant Pathol 132:123–132

    Article  CAS  Google Scholar 

  • Gatto MA, Ippolito A, Linsalata V, Cascarano NA, Nigro F, Vanadia S, Di Venere D (2011) Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol Technol 61:72–82

    Article  Google Scholar 

  • Gerlagh M (1968) Introduction of Ophiobolus graminis into new polders and its decline. Neth J Plant Pathol 74:1–97

    Article  Google Scholar 

  • Ghasemi S, Abbasi S, Bahraminejad S, Harighi B (2012) An antifungal compound from Trichoderma harzianum SQR-T037 effectively controls Fusarium wilt of cucumber in continuously cropped soil. Australas Plant Pathol 41:239–245

    Article  Google Scholar 

  • Ghini R, Morandi MAB (2006) Biotic and abiotic factors associated with soil suppressiveness to Rhizoctonia solani. Sci Agric 63:153–160

    Article  CAS  Google Scholar 

  • Gianinazzi S (1983) Genetic and molecular aspects of resistance induced by infection and chemicals. In: Wester EW, Kosuge T (eds) Plant-microbe interactions: molecular and genetic perspectives. MacMillan, New York, pp 321–342

    Google Scholar 

  • Giotis C, Markelou E, Theodoropoulous A, Toufexi E, Hodson R, Shotton P, Shiel R, Cooper J, Leifert C (2009) Effect of soil amendments and biological control agents (BCAs) on soilborne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production. Eur J Plant Pathol 123:387–400

    Article  Google Scholar 

  • Girault T, François J, Rogniaux H, Pascal S, Delrot S, Coutos-Thevenot P, Gomes E (2008) Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Plant Physiol Biochem 46:140–149

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang H-S, Nawrath C, Métraux J-P, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  CAS  PubMed  Google Scholar 

  • Gonçlaves F, Martins MC, Silva Junior GJ, Lourenço SA, Amorim L (2010) Postharvest control of brown rot and Rhizopus rot in plums and nectarines using carnauba wax. Postharvest Biol Technol 58:211–217

    Article  CAS  Google Scholar 

  • Gottstein HC, Kuć J (1989) Induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology 79:176–179

    Article  Google Scholar 

  • Goud JC, Termorshuizen AJ, Block WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestations on Verticillium wilt. Plant Dis 88:688–694

    Article  Google Scholar 

  • Graham JH, Myers ME (2011) Soil application of SAR inducers imidacloprid, thiamethoxam and acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Dis 95:725–728

    Article  CAS  Google Scholar 

  • Gregori R, Mari M, Bertolini P, Barajas JAS, Tian JB, Labavitch JM (2008) Reduction of Colletotrichum acutatum infection by a polygalacturonase inhibitor protein extracted from apple. Postharvest Biol Technol 48:309–313

    Article  CAS  Google Scholar 

  • Haciasalihoglu G, Ji P, Longo LM, Olson S, Momol TM (2007) Bacterial wilt induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on bacterial wilt in tomato. Crop Prot 26:978–982

    Article  CAS  Google Scholar 

  • Hao JJ, Liu H, Donis-Gonzalez IR, Lu XH, Jones AD, Fulbright DW (2012) Antimicrobial activity of chestnut extracts for potential use in managing soilborne plant pathogens. Plant Dis 96:354–360

    Article  Google Scholar 

  • Harish S, Saravanakumar D, Radjacommare R, Ebenezar EG, Seetharaman K (2008) Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 53:555–567

    Article  Google Scholar 

  • Harm A, Kassemeyer H-H, Seibicke T, Regner F (2011) Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am J Enol Vitic 62:184–192

    Article  Google Scholar 

  • Hassan MAE, Buchenauer H (2007) Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. J Plant Dis Prot 114:151–158

    CAS  Google Scholar 

  • Hassan MAE, Buchenauer H (2008) Enhanced control of bacterial wilt of tomato by DL-3-aminobutyric acid and the fluorescent Pseudomonas isolate CW2. J Plant Dis Protect 115:199–207

    CAS  Google Scholar 

  • He CY, Wolyn DJ (2005) Potential role for salicylic acid in induced resistance of asparagus roots of Fusarium oxyporum f.sp. asparagi. Plant Pathol 54:227–232

    Article  CAS  Google Scholar 

  • Hewajulige IGN, Sultanbaw Y, Wijeratnam RSW, Wijesundara RLC (2009) Mode of action of chitosan coating on anthracnose disease control in papaya. Phytoparasitica 37:437–444

    Article  CAS  Google Scholar 

  • Hjort K, Lembke A, Speksnijder A, Smalla K, Jansson JK (2007) Community structure of actively growing bacterial populations in plant pathogen suppressive soil. Microbiol Ecol 53:393–413

    Article  Google Scholar 

  • Hofgaard IS, Ergon A, Henriksen B, Trons AM (2010) The effect of potential resistance inducers on development of Microdochium majus and Fusarium culmorum in winter wheat. Eur J Plant Pathol 128:269–281

    Article  CAS  Google Scholar 

  • Hong JC, Momol MT, Ji P, Olson SM, Colee J, Jones JB (2011) Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Prot 30:1340–1345

    Article  CAS  Google Scholar 

  • Horst LE, Locke J, Krause CR, McMohan RW, Madden LV, Hoitink HAJ (2005) Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Dis 89:1195–1200

    Article  Google Scholar 

  • Huang Y, Deverall BJ, Tang WH, Wang W, Wu FW (2000) Foliar application of acibenzolar-S-methyl and protection of postharvest rock melons and Hami melons from disease. Eur J Plant Pathol 106:651–656

    Article  CAS  Google Scholar 

  • Huang J, Li H, Yuan H (2006) Effect of organic amendments on Verticillium wilt of cotton. Crop Prot 25:1167–1173

    Article  Google Scholar 

  • Huang C-H, Roberts PD, Datnoff LE (2011) Silicon suppresses Fusarium crown and root rot of tomato. J Phytopathol 159:546–554

    Article  CAS  Google Scholar 

  • Huang YH, Wang RC, Li CH, Zuo CW, Wei YR, Zhang L, Li GJ (2012) Control of Fusarium wilt in banana with Chinese leek. Eur J Plant Pathol 134:87–95

    Article  PubMed  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to Tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Ishida AKN, Souza RM, Resende MLV, Cavalcanti FR, Oliveira DL, Pozza EA (2008) Rhizobacterium and acibenzolar-S-methyl (ASM) in resistance induction against bacterial blight and expression of defense responses in cotton. Trop Plant Pathol 33:27–34

    Article  Google Scholar 

  • Ishii H, Watanabe H, Tanabe K (2002) Venturia nashicola: pathological specialization on pears and control trials with resistance inducers. Acta Hortic 587:613–621

    CAS  Google Scholar 

  • Jalali B, Bhargava S, Kamble A (2006) Signal transduction and transcriptional regulations of plant defence responses. J Phytopathol 154:65–74

    Article  CAS  Google Scholar 

  • Jaulneau V, Lafitte C, Corio-Costet M-F, Stadnik MJ, Salamagne S, Briand X, Esquerre-Tugayé M-T, Dumas B (2011) An Ulva armoricana extract protects plants against three powdery mildew pathogens. Eur J Plant Pathol 131:393–401

    Article  Google Scholar 

  • Jayakumar V, Bhaskaran R, Tsushima S (2007) Potential of plant extract in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Can J Microbiol 52:196–206

    Article  CAS  Google Scholar 

  • Jayaraj J, Rahman M, Wan A, Punja ZK (2009) Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann Appl Biol 155:71–80

    Article  CAS  Google Scholar 

  • Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB (2005) Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis 89:497–500

    Article  CAS  Google Scholar 

  • Jiang S, Park P, Ishii H (2008) Ultrastructural study on acibenzolar-S-methyl-induced scab resistance in epidermal pectin layers of Japanese pear leaves. Phytopathology 95:585–591

    Article  Google Scholar 

  • Johri K, Johri BN, Saksena SB (1975) Colonization capacity of the soil microorganisms in relation to fungistasis. Plant Soil 43:347–354

    Article  Google Scholar 

  • Jones RW, Prusky D (2002) Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33–37

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC, Mina BL, Gupta HS (2009) Suppressive effect of composts on soilborne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28:608–615

    Article  Google Scholar 

  • Kablan L, Lagauche A, Delvaux B, Legreve A (2012) Silicon reduces black Sigatoka development in banana. Plant Dis 96:273–278

    Article  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2006) Suppressive effect of liquid potassioum silicate on powdery mildew of strawberry in soil. J Gen Plant Pathol 72:137–142

    Article  CAS  Google Scholar 

  • Kanto T, Maekawa K, Aino M (2007) Suppression of conidial germination and appressorial formation by silicate treatment in powdery mildew of strawberry. J Gen Plant Pathol 73:1–7

    Article  CAS  Google Scholar 

  • Kasselaki A-M, Malathrakis NE, Goumas DE, Cooper JM, Leifer C (2008) Effect of alternative treatments on seedborne Didymella lycopersici in tomato. J Appl Microbiol 105:36–41

    Article  CAS  PubMed  Google Scholar 

  • Kasuya M, Oliver AR, Ota Y, Tojo M, Honjo H, Fukui R (2006) Induction of soil suppressiveness against Rhizoctonia solani by incorporation of dried plant residues into soil. Phytopathology 96:1372–1379

    Article  PubMed  Google Scholar 

  • Kauss H, Theisingerhinkel E, Mindermann R, Conrath U (1992) Dichloroisonicotinic acid and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J 2:655–660

    Article  CAS  Google Scholar 

  • Kawahara T, Namba H, Toyoda K, Kasai T, Sugimoto M, Inagaki Y, Ichinose Y, Shiraishi T (2006) Induction of defense responses in pea tissues by inorganic phosphate. J Gen Plant Pathol 72:129–136

    Article  CAS  Google Scholar 

  • Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–286

    Article  Google Scholar 

  • Kishore GK, Pande S, Harish S (2007) Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in peanut. Plant Dis 91:375–379

    Article  CAS  Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  Google Scholar 

  • Ko W, Shiroma S (1989) Distribution of Phytophthora suppressive soil in nature. J Phytopathol 127:75–80

    Article  Google Scholar 

  • Konstantinidou-Doltsinis S, Markellou E, Kasselaki AM, Fanouraki MN, Koumaki CM, Schmitt A, Liopa-Tsakalidis A, Malathrakis NE (2006) Efficacy of Milsana®, a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). BioControl 51:375–392

    Article  Google Scholar 

  • Kordali S, Cakir A, Zengin H, Duru ME (2003) Antifungal activities of the leaves of three Pistacia species grown in Turkey. Fitoterapia 74:164–167

    Article  CAS  PubMed  Google Scholar 

  • Kowalski B, Terry J, Herrera L, Penalver AD (2006) Application of soluble chitosan in in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176

    Article  CAS  Google Scholar 

  • Kulakiotu EK, Thanassoulopoulos CC, Sfakiotakis EM (2004a) Biological control of Botrytis cinerea by volatiles of Isabella grapes. Phytopathology 94:924–931

    Article  PubMed  Google Scholar 

  • Kulakiotu EK, Thanassoulopoulos CC, Sfakiotakis EM (2004b) Postharvest biological control of Botrytis cinerea on kiwifruit by volatiles of Isabella grapes. Phytopathology 94:1280–1285

    Article  PubMed  Google Scholar 

  • Kyselková M, Kopecký J, Frapolli M, Défago G, Ságova-Marečková M, Grundmann G, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Laflamme P, Benhamou N, Bussieres G, Dessureault M (1999) Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can J Bot 77:1460–1468

    Article  Google Scholar 

  • Lafontaine JP, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defense activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    Article  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot 10:279–286

    Article  Google Scholar 

  • Li HY, Yu T (2001) Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. J Sci Food Agric 81:269–274

    Article  CAS  Google Scholar 

  • Liang YC, Sun WC, Romheld V (2005) Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685

    Article  CAS  Google Scholar 

  • Liebman JA, Epstein L (1992) Activity of fungistatic compounds from soil. Phytopathology 82:147–153

    Article  Google Scholar 

  • Liljeroth E, Bengtsson T, Wiik L, Andreasson E (2010) Induced resistance in potato to Phytophthora infestans: effects of BABA in greenhouse and field tests with different potato varieties. Eur J Plant Pathol 127:171–183

    Article  CAS  Google Scholar 

  • Lin T-C, Ishizaka M, Ishii H (2009) Acibenzolar-S-methyl-induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. J Phytopathol 157:40–50

    Article  CAS  Google Scholar 

  • Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55:673–683

    Article  Google Scholar 

  • Liu WT, Chu CL, Zhou T (2002) Thymol and acetic acid vapors reduce postharvest brown rot of apricots and plums. HortSci 37:151–156

    CAS  Google Scholar 

  • Liu H, Jiang W, Bi Y, Luo Y (2005) Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biol Technol 35:263–269

    Article  CAS  Google Scholar 

  • Liu X, Wang LP, Li YC, Li Hy YT, Zheng XD (2009) Antifungal activity of thyme oil against Geotrichum citri-auranti in vitro and in vivo. J Appl Microbiol 107:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Lobato MC, Olivieri FP, Altamiranda EAG, Wolski EA, Daleo GR, Caldiz DO, Andrew AB (2008) Phosphite compounds reduce disease severity in potato seed tubers and foliage. Eur J Plant Pathol 122:349–358

    Article  CAS  Google Scholar 

  • López-Delagado H, Mora-Herrera ME, Zavaleta-Mancera HA, Cadena-Hinnojosa M, Scott IM (2004) Salicylic acid enhances heat tolerance and Potato virus X (PVX) elimination during thermotherapy of potato microplants. Am J Potato Res 81:171–176

    Article  Google Scholar 

  • López-Escudero FJ, Mwanza C, Blanco-López MA (2007) Reduction of Verticillium dahliae microsclerotia viability in soil by dried plant residues. Crop Prot 26:127–133

    Article  Google Scholar 

  • Lu Z-X, Gaudet DA, Frick M, Puchlaski B, Genswein B, Laroche A (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. J Biochem Mol Biol 38:420–431

    Article  CAS  PubMed  Google Scholar 

  • Lu Z-X, Gaudet D, Puchalski B, Despins T, Frick M, Laroche A (2006) Inducers of resistance reduce common bunt infection in wheat seedlings, while differentially regulating defence-gene expression. Physiol Mol Plant Pathol 167:138–148

    Google Scholar 

  • Lu P, Gilardi G, Gullino ML, Garibaldi A (2010) Biofumigation with Brassica plants and its effect on the inoculum potential for Fusarium yellows of Brassica crops. Eur J Plant Pathol 126:387–402

    Article  Google Scholar 

  • Macnish AJ, Morris KL, de Theije A, Mensink MGJ, Boerrigter HAM, Jiang C-Z, Woltering EJ (2010) Sodium hypochlorite: a promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biol Technol 58:262–267

    Article  CAS  Google Scholar 

  • Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002

    Article  CAS  PubMed  Google Scholar 

  • Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungi and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73:6629–6636

    Article  CAS  PubMed  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HT (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f.sp. lycospersici in tomato. Plant Physiol Biochem 47:642–649

    Article  CAS  PubMed  Google Scholar 

  • Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S (2000) Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56:921–926

    Article  CAS  Google Scholar 

  • Manjunatha G, Roopa KS, Geetha N, Prashanth N, Shetty HS (2008) Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defense-related enzyme activation. Pest Manag Sci 64:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–330

    Article  CAS  PubMed  Google Scholar 

  • Marcucci E, Aleandri MP, Chilosi G, Magro P (2010) Induced resistance by ß-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. J Phytopathol 158:659–667

    Article  CAS  Google Scholar 

  • Mari M, Guizzardi M (1998) The postharvest phased: emerging technologies for the control of fungal diseases. Phytoparasitica 26:59–66

    Article  Google Scholar 

  • Mari M, Leoni O, Iori R, Cembali T (2002) Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillium expansum on pears. Plant Pathol 51:231–236

    Article  CAS  Google Scholar 

  • Markakis EA, Tjamos SE, Chatzipavlidas I, Antoniou PP, Paplomatas EJ (2008) Evaluation of compost amendments for control of vascular wilt diseases. J Phytopathol 156:622–627

    Article  Google Scholar 

  • Martinati JC, Harakava R, Guzzo SO, Tsai SM (2008) The potential use of a silicon source as a component of an ecological management of coffee plants. J Phytopathol 156:458–463

    Article  Google Scholar 

  • Mattheis JP, Roberts RG (1993) Fumigation of sweet cherry (Prunus avium ‘Bing’) fruit with low molecular weight aldehydes for postharvest decay control. Plant Dis 77:810–814

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AT (1996) Production of salicylic acid precursors is a major function of phenylalanine-ammonia lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    CAS  PubMed  Google Scholar 

  • Maxson-Stein K, He SY, Hammerschmidt R, Jones AL (2002) Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression of pathogenesis-related protein genes. Plant Dis 86:785–790

    Article  CAS  Google Scholar 

  • Mayers CN, Lee K-C, Moore CA, Wong S-M, Carr JP (2005) Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol Plant Microbe Interact 18:428–434

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220

    PubMed  Google Scholar 

  • Mazzola M, Granatstein DM, Elfving DC, Mullinix K (2001) Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91:673–679

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbial Ecol 48:338–348

    Article  CAS  Google Scholar 

  • Mazzola M, Brown J, Izzo AD, Cohen MF (2007) Mechanism of action and efficiency of seed meal-induced pathogen suppression differ in Brassicaceae species- and time-dependent manner. Phytopathology 97:454–460

    Article  PubMed  Google Scholar 

  • Mboubda HDF, Djocgoue PF, Omokolo ND, El Hadrami I, Boudjek T (2010) Benzo-(1,2,3)-thiadiazole-7-carbothioic-S-methyl ester (BTH) stimulates defense reactions in Xanthosoma sagittifolium. Phytoparasitica 38:71–79

    Article  CAS  Google Scholar 

  • McKeller ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460

    Article  CAS  Google Scholar 

  • McNally DJ, Wurms K, Labbe C, Bélanger RR (2004) Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Physiol Mol Plant Pathol 63:293–303

    Article  CAS  Google Scholar 

  • Md. Hamiduzzaman M, Jakab G, Barnavon L, Neuhaus J-M, Mauch-Mani B (2005) ß-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant Microbe Interact 18:819–829

    Article  CAS  Google Scholar 

  • Menzies J (1959) Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology 49:648–652

    Google Scholar 

  • Menzies J, Bowen P, Ehret D, Glass ADM (1992) Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon and zucchini squash. J Am Soc Hortic Sci 112:902–905

    Google Scholar 

  • Mersha Z, Zhang S, Raid RN (2012) Evaluation of systemic acquired resistance inducers for control of downy mildew in basil. Crop Prot 40:83–90

    Article  CAS  Google Scholar 

  • Messiha NAS, van Bruggen AHC, van Diepeningen AD, de Vos OJ, Termorshuizen AJ, Tzou-Tam-Sin NAA, Janse JD (2007a) Potato brown rot incidence and severity under different management regimes in different soil types. Eur J Plant Pathol 119:367–381

    Article  Google Scholar 

  • Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, van Bruggen HC, Blok WJ (2007b) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415

    Article  Google Scholar 

  • Métraux JP, Strait L, Staub T (1988) A pathogenesis-related protein in cucumber is a chitinase. Physiol Mol Plant Pathol 33:1–9

    Article  Google Scholar 

  • Métraux JP, Ahl-Goy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E (1991) Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interaction, vol 1. Kluwer Academic Publishers, Dordrecht, pp 432–439

    Chapter  Google Scholar 

  • Momol MT, Momol EA, Dankers WA, Olson SM, Simmons JA, Rich JR (1999) Evaluation of selected oils for suppression of Ralstonia solanacearum and Meloidogyne arenaria on tomato. Phytopathology 89:S54 (Abs.)

    Google Scholar 

  • Mondal AH, Nehl DB, Allen SJ (2005) Acibenzolar-S-methyl induces systemic resistance in cotton against black root rot caused by Thielaviopsis basicola. Australas Plant Pathol 34:499–507

    Article  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mulin P, Wang JS, Qiu D, Wei ZM (1998) Disease control and growth enhancement effects of harpin in tobacco. Phytopathology 88:S65 (Abs.)

    Google Scholar 

  • Muñoz Z, Moret A (2010) Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl. Pest Manag Sci 66:974–979

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar A, Easwaran A, Nakkeeran S, Sangeetha G (2010) Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Prot 29:1483–1488

    Article  Google Scholar 

  • Nandini D, Mohan JSS, Singh G (2010) Induction of systemic acquired resistance in Arachis hypogaea L. by Sclerotium rolfsii derived elicitors. J Phytopathol 158:594–600

    Google Scholar 

  • Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance to plant virus movement. Mol Plant Microbe Interact 11:860–868

    Article  CAS  Google Scholar 

  • Neri F, Mari M, Brigati S, Bartolini P (2009) Control of Neofabrae alba by plant volatile compound and hot water. Postharvest Biol Technol 51:425–430

    Article  CAS  Google Scholar 

  • Newrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  CAS  Google Scholar 

  • Nie X (2006) Salicylic acid suppresses Potato virus Y isolate N:O-induced symptoms of tobacco plants. Phytopathology 96:255–263

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KK, Bojsen K, Collinge DB, Mikkelsen JD (1994) Induced resistance in sugar beet against Cercospora beticola: induction by dichloroisonicotinic acid is independent of chitinase and ß-1,3-glucanase transcript accumulation. Physiol Mol Plant Pathol 45:89–99

    Article  Google Scholar 

  • Obagwu J, Korsten L (2003) Control of citrus green and blue molds with garlic extracts. Eur J Plant Pathol 109:221–225

    Article  CAS  Google Scholar 

  • Ochiai N, Powelson ML, Dick RP, Crowe FJ (2007) Effects of green manure type and amendment rate on Verticillium wilt severity and yield of Russet Burbank potato. Plant Dis 91:400–406

    Article  Google Scholar 

  • Oka N, Okhi T, Honda Y, Nagaoka K, Takenaka M (2008) Inhibition of Pepper mild mottle virus with commercial cellulases. J Phytopathol 156:65–67

    Article  CAS  Google Scholar 

  • Olivieri FP, Lobato MC, Altamiranda EG, Daleo GR, Huarte M, Guevara MG, Andreu AB (2009) BABA effects on the behavior of potato cultivars infected by Phytophthora infestans and Fusarium solani. Eur J Plant Pathol 123:47–56

    Article  CAS  Google Scholar 

  • Ongena M, Jordan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thornart T (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Orober M, Siegrist J, Buchenaueer H (2002) Mechanisms of phosphate-induced resistance in cucumber. Eur J Plant Pathol 108:345–353

    Article  CAS  Google Scholar 

  • Özer N, Köycü ND (2006) The ability of plant compost leachates to control black mold (Aspergillus niger) and to induce the accumulation of antifungal compounds in onion following seed treatment. BioControl 51:229–243

    Article  Google Scholar 

  • Özer N, Koç M, Der B (2009) The sensitivity of Aspergillus niger and Fusarium oxysporum f.sp. cepae to fungistasis in oninon growing soils. J Plant Pathol 91:401–410

    Google Scholar 

  • Pajot E, Le Corre D, Silue D (2001) Phytogard and DL-beta-aminobutryric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L.). Eur J Plant Pathol 107:861–869

    Article  CAS  Google Scholar 

  • Palma-Guerrero J, Jansson H-B, Salinas J, Lopez-Llorca LV (2008) Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol 104:541–553

    CAS  PubMed  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressive to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56:115–124

    Article  Google Scholar 

  • Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost tea applications. Crop Prot 38:80–86

    Article  Google Scholar 

  • Park K, Paul D, Kim E, Kloepper JW (2008) Hyaluronic acid of Streptococcus sp. as a potent elicitor for induction of systemic resistance against plant diseases. World J Microbiol Biotechnol 24:1153–1158

    Article  CAS  Google Scholar 

  • Patrício FRA, Almeida IMG, Barros BC, Santos AS, Frare PM (2008) Effectiveness of acibenzolar-S-methyl, fungicides and antibiotics for the control of brown eye spot, bacterial blight, brown leaf spot and rust in coffee. Ann Appl Biol 152:29–38

    Article  CAS  Google Scholar 

  • Pavlou GC, Vakalounakis DJ (2005) Biological control of root and stem rot of greenhouse cucumber caused by Fusarium oxysporum f.sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot 24:135–140

    Article  Google Scholar 

  • Porat R, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt E, Droby S (2003) Induction of resistance to Penicillium digitatum in grapefruit by ß-aminobutyric acid. Eur J Plant Pathol 109:901–907

    Article  CAS  Google Scholar 

  • Portz D, Koch E, Slusarenko AJ (2008) Effects of garlic (Allium sativum) juice containing allicin on Phytophthora infestans and downy mildew of cucumber caused by Pseudoperonospora cubensis. Eur J Plant Pathol 122:197–206

    Article  CAS  Google Scholar 

  • Postma J, Scheper RWA, Schilder MT (2010) Effect of successive cauliflower planting and Rhizoctonia solani AG2-1 inoculations on disease suppressiveness of a suppressive and conducive soil. Soil Biol Biochem 42:804–812

    Article  CAS  Google Scholar 

  • Potlakayala SD, Reed DW, Covello PS, Fobert PR (2007) Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97:794–802

    Article  CAS  PubMed  Google Scholar 

  • Pradhanang PM, Mamol MT, Olson SM, Jones JB (2003) Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis 87:423–433

    Article  CAS  Google Scholar 

  • Prakasam V, Abraham S, Kannan C (2001) Management of postharvest fungal diseases of carrot using botanicals. South Indian Hortic 49:271–274

    Google Scholar 

  • Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. BioControl 51:533–546

    Article  CAS  Google Scholar 

  • Qin GZ, Tian SP (2005) Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible metabolism involved. Phytopathology 95:69–75

    Article  PubMed  Google Scholar 

  • Qiu X, Guan P, Wang ML, Moore PH, Zhu YJ, Hu J, Borth W, Albert MH (2004) Identification and expression analysis of BTH induced genes in papaya. Physiol Mol Plant Pathol 65:21–30

    Article  CAS  Google Scholar 

  • Quaglia M, Ederli L, Pasqualini S, Zazzerini A (2011) Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biol Technol 59:307–315

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Alabouvette C, Steinberg C, Moënne-Loccoz Y (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. doi:10.107/s11104-008-9568-6

  • Rabea EI, El-Badawy MT, Stevens CV, Smagghe G, Steurbant W (2003) Chitosan as antimicrobial agent: applications and modes of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Hossain MA, Kang SC (2010) Control of phytopathgenic fungi by the essential oil and methanolic extracts of Erigeron ramosus (Walt.) B.S.P. Eur J Plant Pathol 128:211–219

    Article  CAS  Google Scholar 

  • Ramos-García M, Bosquez-Molina E, Hernández-Romano J, Zavala-Padilla G, Terrés-Rojas E, Alia-Tejcal I, Barrera-Necha L, Hernández-Lopez M, Bautista-Baños S (2012) Use of chitosan-based edible coatings in combination with other natural compounds to control Rhizopus stolonifer and Escherichia coli DH5a in fresh tomatoes. Crop Prot 38:1–6

    Article  CAS  Google Scholar 

  • Reddy MVB, Angers P, Castaigne F, Arul J (2000a) Chitosan effects on black mold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. J Am Soc Hortic Sci 125:742–747

    CAS  Google Scholar 

  • Reddy MVB, Belkacemi K, Corcuff R, Castaigne F, Arul J (2000b) Effect of preharvest sprays on postharvest infections of Botrytis cinerea and quality of strawberry fruit. Postharvest Biol Technol 20:39–51

    Article  Google Scholar 

  • Reglinski T, Elmer PAG, Taylor JT, Parry FJ, Marsden R, Wood PN (2005) Suppression of Botrytis bunch rot in Chardonnay grapevines by induction of host resistance and fungal antagonism. Australas Plant Pathol 34:481–488

    Article  Google Scholar 

  • Reglinski T, Elmer PAG, Taylor JT, Wood PN, Hoyle SM (2010) Inhibition of Botrytis cinerea growth and suppression of Botrytis bunch rot in grapes using chitosan. Plant Pathol 59:882–890

    Article  CAS  Google Scholar 

  • Reuveni R, Agapov V, Reuveni M (1994) Foliar spray of phosphates induces growth increases and systemic resistance to Puccinia sorghi in maize. Plant Pathol 43:245–250

    Article  Google Scholar 

  • Reuveni M, Agapov V, Reuveni R (1997) A foliar spray of micronutrient solution induces local and systemic protection against powdery mildew (Sphaerotheca fuliginea) in cucumber plants. Eur J Plant Pathol 103:581–584

    Article  CAS  Google Scholar 

  • Reuveni R, Dor G, Raviv M, Reuveni M, Tuzun S (2000) Systemic resistance against Sphaerotheca fuliginea in cucumber plants exposed to phosphate in hydroponics system and its control by foliar spray of monopotassium phosphate. Crop Prot 19:355–361

    Article  CAS  Google Scholar 

  • Rhouma A, Daoud HB, Ghanni S, Salah HB, Romdhane M, Demak M (2009) Antimicrobial activities of leaf extracts of Pistacia and Schinus species against some plant pathogenic fungi and bacteria. J Plant Pathol 91:339–345

    Google Scholar 

  • Rodrigues FA, Jurick WM II, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Romanazzi G, Nigro R, Ippolito A (2000) Effectiveness of pre- and post-harvest chitosan treatments on storage decay of strawberries. Rivista Frittic Ortofloric 62:71–75

    Google Scholar 

  • Romanazzi G, Gabler FM, Margosan D, Mackey BE, Smilanick JL (2009) Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 99:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Romero AM, Ritchie DF (2004) Systemic acquired resistance delays race shifts into major resistance genes in bell pepper. Phytopathology 94:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Rongai D, Cerato C, Lazzeri L (2009) A natural fungicide for the control of Erysiphe betae and Erysiphe cichoracearum. Eur J Plant Pathol 124:613–619

    Article  Google Scholar 

  • Ros M, Hernandez MT, Garcia C, Bernal A, Pascual JA (2005) Biopesticide effect of green compost against Fusarium wilt on melon plants. J Appl Microbiol 98:845–854

    Article  CAS  PubMed  Google Scholar 

  • Rosa EAS, Rodrigues PMF (1999) Towards a more sustainable agriculture system: the effect of glucosinolates on the control of soilborne diseases. J Hortic Sci Biotechnol 74:667–674

    CAS  Google Scholar 

  • Rosenfeld Y, Sahl HG, Shai Y (2008) Parameters involved in antimicrobial and endotoxin activities of antimicrobial peptides. Biochemistry 47:6468–6478

    Article  CAS  PubMed  Google Scholar 

  • Ross AF (1961a) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    Article  CAS  PubMed  Google Scholar 

  • Ross AF (1961b) Systemic acquired resistance induced by localized virus infection in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Saadi I, Laor Y, Medina S, Krassnovsky A, Raviv M (2010) Compost suppressiveness against Fusarium oxysporum was not reduced after one year-storage under various moisture and temperature conditions. Soil Biol Biochem 42:626–634

    Article  CAS  Google Scholar 

  • Salzman R, Brady J, Finlayson S, Buchnan C, Summer EJ, Sun F, Klein PE, Pratt LH, Cordonnier-Pratt M, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Estrada A, Tiznado-Hernández ME, Ojed-Contreras AJ, Valenzuela-Quintanar AI, Troncoso-Rojas R (2009) Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. J Phytopathol 157:24–32

    Article  CAS  Google Scholar 

  • Sanzani SM, Schena L, De Girolamo A, Ippolito A, González-Candelas L (2010) Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biol Technol 56:1–11

    Article  CAS  Google Scholar 

  • Šašek V, Nováková M, Dobrev RI, Valentová O, Burketová L (2012) ß-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans-Resistance induction or a direct antifungal effect? Eur J Plant Pathol 133:279–289

    Article  CAS  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2004) Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology 94:1156–1163

    Article  PubMed  Google Scholar 

  • Segarra G, Casanova E, Borrero C, Avilés M, Trillas MI (2007) The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. Eur J Plant Pathol 117:393–402

    Article  Google Scholar 

  • Segarra G, Reis M, Casanova E, Trillas MI (2009) Control of powdery mildew (Erysiphe polygoni) in tomato by foliar applications of compost tea. J Plant Pathol 91:683–689

    Google Scholar 

  • Shailasree S, Ramachandra KK, Shetty SH (2007) ß-aminobutyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australas Plant Pathol 36:204–211

    Article  CAS  Google Scholar 

  • Shetty R, Jensen B, Shetty NP, Hansen M, Hansen CW, Starkey KR, Jorgensen HJL (2012) Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathol 61:120–131

    Article  CAS  Google Scholar 

  • Shi ZQ, Shen SG, Xu LL, Fan YJ (2004) Inhibition mechanism of osthol to plant fungus pathogens. Chin J Pest Sci 6:28–32

    CAS  Google Scholar 

  • Shi Z, Wang F, Zhou W, Zhang P, Fan YJ (2007) Application of osthol induces a resistance response against powdery mildew in pumpkin leaves. Int J Mol Sci 8:1001–1012

    Article  Google Scholar 

  • Shipton PJ, Cook RJ, Sitton JW (1973) Occurrence and transfer of a biological factor in soil that suppresses take-all in wheat in eastern Washington. Phytopathology 63:511–517

    Article  CAS  Google Scholar 

  • Shternshis MV, Beljaev AA, Shptova TV, Duzhak AB, Panfilova ZI (2006) The effect of chitinase on Didymella applanata, the causal agent of raspberry cane spur blight. BioControl 51:311–322

    Article  CAS  Google Scholar 

  • Siegrist J, Jeblick W, Kauss H (1994) Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance. Plant Physiol 105:1365–1374

    CAS  PubMed  Google Scholar 

  • Siegrist J, Glenewinkel D, Schmidke M (1997) Chemically induced resistance in green bean against bacterial and fungal pathogens. J Plant Dis Prot 104:599–610

    CAS  Google Scholar 

  • Sillero JC, Rojas-Molina MM, Avila CM, Rubiales D (2012) Induction of systemic acquired resistance against rust, Aschochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot 43:65–69

    Article  CAS  Google Scholar 

  • Silue D, Pajot E, Cohen Y (2002) Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-beta-aminobutyric acid (BABA). Plant Pathol 51:97–102

    Article  CAS  Google Scholar 

  • Slaughter AR, Md. Hamiduzzaman M, Gindro K, Neuhaus J-M, Mauch-Mani B (2008) Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. Eur J Plant Pathol 122:185–195

    Article  CAS  Google Scholar 

  • Slusarenko AJ, Patel A, Portz D (2008) Control of plant diseases by natural products: allicin from garlic as a case study. Eur J Plant Pathol 121:313–322

    Article  Google Scholar 

  • Small IM, Flett BC, Marasas WFO, McLeod A, Viljoen A (2012) Use of resistance elicitors to reduce Fusarium ear rot and fumonisin contamination in maize. Crop Prot 41:10–16

    Article  CAS  Google Scholar 

  • Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87:407–412

    Article  CAS  Google Scholar 

  • Soylu EM, Soylu S, Baysal O (2003) Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. J Plant Pathol 85:175–181

    CAS  Google Scholar 

  • Sparla F, Rotino L, Valgimigli MC, Pupillo P, Trost P (2004) Systemic resistance induced by benzothiadiazole in pear inoculated with the agent of fire blight (Erwinia amylovora). Sci Hortic 101:269–279

    Article  CAS  Google Scholar 

  • Srivastava A, Trivedi S, Krishna SK, Verma HN, Prasad V (2009) Suppression of Papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum. Eur J Plant Pathol 123:241–246

    Article  CAS  Google Scholar 

  • Srivastava P, George S, Marios JJ, Wright DL, Walker DR (2011) Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: effects on growth and development. Crop Prot 30:726–732

    Article  CAS  Google Scholar 

  • Stadnik MJ, Buchenauer H (2000) Inhibition of phenylalanine ammonia lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f.sp. tritici. Physiol Mol Plant Pathol 39:451–461

    Google Scholar 

  • Stephan D, Schmitt A, Carvalho SM, Seddon B, Koch E (2005) Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. Eur J Plant Pathol 112:235–246

    Article  Google Scholar 

  • Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Stone AG, Vallad GE, Cooperband LR, Rotenberg D, Darby HM, James RV, Stevenson WR, Goodman RM (2003) Effect of organic amendments on soilborne and foliar diseases in field-grown snap bean and cucumber. Plant Dis 87:1037–1042

    Article  Google Scholar 

  • Stutz EW, Défago G, Hantke R, Kern H (1985) Effect of parent material derived from different geological strata on suppressiveness of soils to black root rot of tobacco. In: Parker CA, Rovira AD, Moore KJ, Wong PTW, Kollmorgen JF (eds) Ecology and management of soilborne plant pathogens. Academic, New York, pp 215–217

    Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Article  Google Scholar 

  • Suarez-Estrella F, Vargas-Garcia C, Lopez MJ, Capel C, Moreno J (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f.sp. melonis. Crop Prot 26:46–53

    Article  Google Scholar 

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interaction in plant cells. Nat Biotechnol 19:769–772

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, Watanabe K, Furiki M, Walker DR, Yoshida S, Aino M, Kanto T, Irie K (2009) Rot disease of soybeans, the growth rate and zoospore release of Phytophthora sojae. J Phytopathol 157:379–389

    Article  CAS  Google Scholar 

  • Sun J-Y, Gaudet DA, Lu Z-X, Frick M, Puchlaski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant Microbe Interact 21:346–360

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhang J, Fan Q, Xue G, Li Z, Liang Y (2010) Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as a physical barrier. Eur J Plant Pathol 128:39–49

    Article  CAS  Google Scholar 

  • Takemoto JY, Bensaci M, De Lucca AJ, Cleveland TE, Gandhi NR, Skebba VP (2010) Inhibition of fungi from diseased grape by syringomycin E-rhamnolipid mixture. Am J Enol Vitic 61:120–124

    CAS  Google Scholar 

  • Tenuta M, Conn KL, Lazarovits G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92:548–552

    Article  CAS  PubMed  Google Scholar 

  • Terry LA, Joyce DC (2000) Suppression of gray mold on strawberry fruit with the chemical plant activator acibenzolar. Pest Manag Sci 56:989–992

    Article  CAS  Google Scholar 

  • Thangavelu P, Sundararaju P, Sathiamoorthi S (2004) Management of anthracnose disease of banana caused by Colletotrichum musae using plant extracts. J Hortic Sci Biotechnol 79:664–668

    CAS  Google Scholar 

  • Tran H, Ficke Asümwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Tzortzakis NG (2007) Methyl jasmonate-induced suppression of anthracnose rot in tomato fruit. Crop Prot 26:1507–1513

    Article  CAS  Google Scholar 

  • Usha K, Singh B, Praseetha P, Deepa N, Agarwal DK, Agarwal R, Nagaraja A (2009) Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango. Eur J Plant Pathol 124:637–657

    Article  Google Scholar 

  • Van Beneden S, Roobroeck D, França SC, De Neve S, Boeckx HM (2010) Microbial populations involved in the suppression of Rhizoctonia solani AG1-1B by lignin incorporation in soil. Soil Biol Biochem 42:1268–1274

    Article  CAS  Google Scholar 

  • van Bruggen A, Semenov A (2000) In search of biological indicators of soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • van Elsas JD, Costa R, Jansson J, Sjoling S, Bailey M, Nalin R, Vogel TM, van Overbeek L (2008) The metagenomics of disease-suppressive soils- experiences from the METACONTROL project. Trends Biotechnol 26:591–601

    Article  PubMed  CAS  Google Scholar 

  • Vechet L, Burkeltova L, Sindelarova M (2009) A comparative study of the efficiency of several sources of induced resistance of powdery mildew (Blumeria graminis f.sp. tritici) in wheat under field conditions. Crop Prot 28:151–154

    Article  Google Scholar 

  • Veeken AHM, Blok WJ, Curci F, Coenen GCM, Termorshuizen AJ, Hamelers HVM (2005) Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended peat-based potting mixes. Soil Biol Biochem 37:2131–2140

    Article  CAS  Google Scholar 

  • Vera J, Castro J, Gonzalez A, Barrientos H, Matsuhiro B, Arce P, Zuniga G, Moenne A (2011) Long-term protection against Tobacco mosaic virus induced by the marine alga oligosulphated-galactan Poly-Ga in tobacco plants. Mol Plant Pathol 12:437–447

    Article  CAS  PubMed  Google Scholar 

  • Vermeire M-L, Kablan L, Dorel M, Delvaux B, Risede J-M, Legreve A (2011) Protective role of silicon in the banana-Cylindrocarpon spathiphylli pathosystem. Eur J Plant Pathol 131:621–630

    Article  CAS  Google Scholar 

  • Walter M, Jaspers MV, Eade K, Frampton CM, Stewart A (2001) Control of Botrytis cinerea grape using thyme oil. Australas Plant Pathol 30:21–25

    Article  Google Scholar 

  • Walz A, Simon O (2009) ß-Aminobutyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. J Phytopathol 157:356–361

    Article  CAS  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Ward E, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander A, Ahl-Goy P, Métraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    CAS  PubMed  Google Scholar 

  • Ward BG, Poole PR, Hill RA, Cutler HG (1998) Postharvest application of natural products to control Botrytis storage rot in kiwifruit. Acta Hortic 464:225–228

    CAS  Google Scholar 

  • Watanabe T, Sekizawa Y, Shimura M, Suzuki Y, Matsmoto K, Iwata M, Mase S (1979) Effects of probenazole (Oryzemate) on rice plants with reference to controlling rice blast. J Pest Sci 4:53–59

    Article  CAS  Google Scholar 

  • Wei ZM, Qiu D, Kropp MJ, Schading RL (1998) Harpin, an elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology 88:S96 (Abs.)

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:308–348

    Article  CAS  Google Scholar 

  • Wen A, Balogh B, Momol MT, Olson SM, Jones JB (2009) Management of bacterial spot of tomato with phosphorus acid salts. Crop Prot 28:859–863

    Article  CAS  Google Scholar 

  • Wiggins BE, Kinkel LI (2005a) Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soilborne streptomycetes. Plant Soil 268:271–283

    Article  CAS  Google Scholar 

  • Wiggins BE, Kinkel LI (2005b) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95:178–185

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorimate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME (1997) Rapid evaluation of plant extracts for antifungal activity against Botrytis cinerea. Plant Dis 144:401–494

    Google Scholar 

  • Win NKK, Jitareerat P, Kanlayanarat S, Sangchote S (2007) Effects of cinnamon extract, chitosan coating, hot water treatment and their combinations on crown rot disease and quality of banana fruit. Postharvest Biol Technol 45:333–340

    Article  CAS  Google Scholar 

  • Witter E, Lopez Real J (1998) Nitrogen losses during the composting of sewage sludge and the effectiveness of clay soil, zeolite and compost in adsorbing the volatilized ammonia. Biol Wastes 23:279–294

    Article  Google Scholar 

  • Wu H-S, Yang X-N, Fan J-Q, Miao W-G, Ling N, XuY-C HQ-W, Shen Q (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 54:287–300

    Article  Google Scholar 

  • Wu H, Zhang X, Zhang G-A, Zeng S-Y, Lin K-C (2011) Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isocyanate against Botrytis cinerea and Penicillium expansum infection on apples. J Phytopathol 159:450–455

    Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease function in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Tian S (2008) Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 49:379–385

    Article  CAS  Google Scholar 

  • Xu J, Zhao X, Han X, Du Y (2007a) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol 87:220–228

    Article  CAS  Google Scholar 

  • Xu W-T, Huang K-L, Guo F, Qu W, Yang J-J, Liang Z-H, Luo Y-B (2007b) Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biol Technol 46:86–94

    Article  CAS  Google Scholar 

  • Yafei C, Yong Z, Xiaoming Z, Peng G, Hailong A, Yuguang D, Yingrong H, Hui L, Yuhong Z (2009) Functions of oligochitosan-induced protein kinase in Tobacco mosaic virus resistance and pathogenesis-related proteins in tobacco. Plant Physiol Biochem 47:724–731

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Silverman PT, Michael AW, Kleier DA, Raston I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    CAS  PubMed  Google Scholar 

  • Yalpani N, Shulaev V, Raskin I (1993) Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83:702–708

    Article  CAS  Google Scholar 

  • Yang B, Shiping T, Jie Z, Yonghong G (2005) Harpin induces local and systemic resistance against Trichothecium roseum in harvested Hami melons. Postharvest Biol Technol 38:183–187

    Article  CAS  Google Scholar 

  • Yao HJ, Tian SP (2005a) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol 98:941–950

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Tian S (2005b) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    Article  CAS  Google Scholar 

  • Yao Y, Xie Z, Chen W, Glazebrook J, Chang H-S, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    Article  CAS  Google Scholar 

  • Yenjit P, Issarakraisila M, Intana W, Chantrapromma K (2010) Fungicidal activity of compounds extracted from the pericarp of Areca catechu against Colletotrichum gloeosporioides in vitro and in mango fruit. Postharvest Biol Technol 55:129–132

    Article  CAS  Google Scholar 

  • Yigit F (2011) Acibenzolar-S-methyl induces lettuce resistance against Xanthomonas campestris pv. vitans. Afr J Biotechnol 10:9606–9612

    CAS  Google Scholar 

  • Yogev A, Raviv M, Kritzman G, Hadar Y, Cohen R, Kirshner B, Katan J (2009) Suppression of bacterial canker of tomato by composts. Crop Prot 28:97–103

    Article  Google Scholar 

  • You M, Sivasithamparam K, Kurtboke D (1996) Actinomycetes in organic mulch used in avocado plantations and their ability to suppress Phytophthora cinnamomi. Biol Fertil Soils 22:237–242

    Article  Google Scholar 

  • Yu M, Shen L, Fan B, Zhao D, Zheng Y, Sheng J (2009) The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato. Postharvest Biol Technol 54:153–158

    Article  CAS  Google Scholar 

  • Yulianti T, Sivasithamparam K, Turner DW (2006a) Response of different forms of propagules of Rhizoctonia solani AG2-1 (ZG5) exposed to the volatiles produced in soil amended with green manures. Ann Appl Biol 148:105–111

    Article  Google Scholar 

  • Yulianti T, Sivasithamparm K, Turner DW (2006b) Saprophytic growth of Rhizoctonia solani AG2-1(ZG5) in soil amended with fresh green manures affects the severity of damping-off in canola. Soil Biol Biochem 38:923–930

    Article  CAS  Google Scholar 

  • Zamani M, Tehrani AS, Ahmadzadeh M, Behboodi K, Hosseininaveh V (2008) Biological control of Penicillium digitatum on oranges using Pseudomonas spp. either alone or in combination with host sodium bicarbonate dipping. Australas Plant Pathol 37:605–608

    Article  CAS  Google Scholar 

  • Zambonelli A, D’Aulerio AZ, Binachi A, Albasini A (1996) Effects of essential oils on phytopathogenic fungi in vitro. J Phytopathol 144:491–494

    Article  CAS  Google Scholar 

  • Zeier J (2005) Age-dependent variations of local and systemic defense responses in Arabidopsis leaves towards an avirulent strains of Pseudomonas syringae. Physiol Mol Plant Pathol 66:30–39

    Article  CAS  Google Scholar 

  • Zeier J, Pink B, Mueller MJ, Berger S (2004) Light conditions influence specific defence responses in compatible plant-pathogen interactions uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673–683

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZLM, Dong S, Xu J, Song H, Zhao Y (2007) Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol Technol 46:95–98

    Article  CAS  Google Scholar 

  • Zhang M, Tan TW (2003) Insecticidal and fungicidal activities of chitosan and oligochitosan. J Bioact Compat Polym 18:391–400

    Article  CAS  Google Scholar 

  • Zhang T, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5 and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    Article  CAS  PubMed  Google Scholar 

  • Zhang PY, Wang JC, Liu SH, Chen KS (2009) A novel burdock fructooligosaccharide induces changes in the production of salicylates, activates defence enzymes and induces systemic acquired resistance to Colletotrichum orbiculare in cucumber seedling. J Phytopathol 157:201–207

    Article  CAS  Google Scholar 

  • Zhang C, Wang J, Zhang J, Hou C, Wang G (2011) Effects of ß-aminobutyric acid on control of postharvest blue mold of apple fruit and its possible mechanism of action. Postharvest Biol Technol 61:145–151

    Article  CAS  Google Scholar 

  • Zhou XG, Everts KL (2004) Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis 88:1357–1365

    Article  Google Scholar 

  • Zhou XG, Everts KL (2007) Effects of host resistance and inoculum density on the suppression of Fusarium wilt of watermelon induced by hairy vetch. Plant Dis 91:92–96

    Article  Google Scholar 

  • Zhu X, Cao J, Wang Q, Jiang W (2008) Postharvest infiltration of BTH reduces infection of mango fruits (Mangifera indica L. cv. Taining) by Colletotrichum gloeosporioides and enhances resistance inducing compounds. J Phytopathol 156:68–74

    Article  Google Scholar 

  • Zhu YJ, Qiu X, Moore PH, Borth W, Hu J, Ferreira S, Albert HH (2003) Systemic acquired resistance induced by BTH in papaya. Physiol Mol Plant Pathol 63:237–248

    Article  CAS  Google Scholar 

Additional References for Further Reading

  • Arrebola E, Sivakumar D, Bacigalupo R, Korsten L (2010) Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Prot 29:369–377

    Article  CAS  Google Scholar 

  • Bautista-Baños S, García-Dominguez E, Barrera Necha LL, Reyes-Chilpa R, Wilson CL (2003) Seasonal evaluation of the postharvest fungicidal activity of the powders and extracts of huamuchil (Pithecellobium dulce): action against Botrytis cinerea, Penicillium digitatum and Rhizopus stolonifer on strawberry fruit. Postharvest Biol Technol 29:81–92

    Article  CAS  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Bélanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 8.1: Induction of Resistance to Apple Fire Blight Disease by Acibenzolar-S-Methyl (ASM) and DL-3-Aminobutyric Acid (BABA) (Hassan and Buchenauer 2008)

8.1.1 A. Application of Inducers of Disease Resistance

  1. i.

    Prepare solutions of BABA at a concentration of 1.0 mg/ml and ASM at a concentration of 0.1 mg/ml; spray BABA at 4 days before inoculation (dbi) or ASM at 2 dbi separately or spray the inducers simultaneously and spray the control plants with sterile distilled water.

  2. ii.

    Inoculate the apple seedlings treated with inducers/control with a suspension of the pathogen (1 × 108 CFU/ml).

  3. iii.

    Spray the apple seedlings with BABA and ASM at different days, as determined to select the time interval for optimal expression of acquired resistance.

8.1.2 B. Evaluation of Disease Severity

  1. i.

    Inoculate the plants using sterilized scissors dipped in bacterial suspension for 20 s and cut the leaf tips (about 1.5 cm from the tip of two young leaves beneath the two apical ones) of apple seedlings; place the inoculated seedlings in dew chamber at 100 % RH and 24 ± 2 °C for 24 h and transfer the plants to the greenhouse.

  2. ii.

    Record the disease indices at 10 days after inoculation expressed as browning discoloration index (BDI) and stem bending index (SBI), as percentages as detailed below for treatments and controls.

Brown discoloration index (BDI) using 0–6 scale: 0 = no leaf symptom; 1 = 25 % or less; 3 = 50–75 %; 4 = >75 %; brown discoloration from the edge of the cutting to the midrib; 5 = >75 % brown discoloration from the edge of cutting to the midrib and/ or the petiole turns brown; 6 = petiole turns brown or black releasing bacterial ooze:

$$ \begin{array}{l}\text{BDI}(\%)={\displaystyle \sum }(\text{number}\ \text{of}\ \text{leaves}\ \times \text{symptom} \text{category}\ )\times 100/\text{number}\ \text{of}\ \text{leaves}\\ \text{evaluated}(2)\times \text{maximum}\ \text{score}\ 6)\end{array}$$

Stem bending index (SBI) using 0–5 scale: 0 = seedlings and leaves fully turgid; 1 = leaf lamina flaccid, stem turgid; 2 = stem bent 0–30° from vertical position; 3 = stem bent 30–60° from vertical position; 4 = stem bent 60–90° from vertical position and 5 = stem bent >90° from vertical position

$$ \text{SBI}(\%)=\text{Category}\ \text{of}\ \text{symptom}\times 100/\text{maximum}\text{socre}(5)$$

Appendix 8.2: Induction of Systemic Acquired Resistance (SAR) by Acibenzolar-S-Methyl (ASM) in Tobacco Against Tomato spotted wilt virus (Mandal et al. 2008)

8.2.1 A. Treatment of Tobacco K326 Plants with ASM

  1. i.

    Dissolve ASM (as 50 % active ingredient (a.i) in wettable powder formulation) in water; spray the solution of ASM with a suitable sprayer on K326 plants at 40–45 days after sowing (DAS) with different concentrations of ASM (0–4.0 g a.i./7,000 plants); wash the plants by spraying with 80 ml of water per flat, containing nine plants to move ASM in the root zone.

  2. ii.

    To determine the time required for SAR activation, treat the tobacco plants with two concentrations of ASM at 2 and 4 g a.i./7,000 plants; to determine the effect of age of tobacco plants on SAR activation, treat the seedlings (47 DAS) and older plants (77 DAS) with 2 g a.i./7,000 plants.

  3. iii.

    Spray the plants with distilled water for non-treated control plants.

8.2.2 B. Challenge Inoculation with TSWV

  1. i.

    Challenge the ASM-treated plants with mechanical inoculation with TSWV inoculum; prepare the inoculum by grinding systemically infected leaves in 0.1 M phosphate buffer, pH 7.0, containing 0.2 % Na2SO4 and 0.01 M mercaptoethanol at the rate of 1:10 tissue and buffer ratio (w/v); remove the debris by squeezing the extract through a layer of nonabsorbent cotton; add 2 % carborundum 320 grit and 1 % celite 545 to the inoculum and maintain the inoculum on ice.

  2. ii.

    Apply inoculum to two youngest fully expanded tobacco leaves and gently rub with cotton swab dipped in the inoculum; gently wash the inoculated leaves with water and maintain the plants in the greenhouse at 25–30 °C.

8.2.3 C. Assessment of TSWV Infection in ASM-Treated Plants

  1. i.

    Observe the experimental plants for the development of symptoms of infection by TSWV; count the number of local lesions on two inoculated leaves of each plant at 6 days post-inoculation (DPI); confirm the infection of TSWV by performing ELISA tests, using tenfold dilution of the sap to relative levels of TSWV in the inoculated leaves of different treatments.

  2. ii.

    Allow the plants to grow for a longer period for the development of systemic symptoms induced by TSWV.

  3. iii.

    Determine the presence and concentration of TSWV in the roots and newly emerged leaves by ELISA tests.

  4. iv.

    Measure the plant height and root length to determine the effect of ASM on plant growth and also record the phytotoxicity symptoms, if any.

Appendix 8.3: Induction of Systemic Acquired Resistance in Pea Against Rust Disease by Abiotic Chemical Inducers (Barilli et al. 2010)

8.3.1 A. Application of Inducers of Disease Resistance

  1. i.

    Prepare predetermined concentrations of the abiotic chemical inducers [SA (5, 7, 8.5 and 10 mM), BTH (1, 5 and 10 mM) and BABA (5, 10, 20 and 50 mM)] in sterile water; add Tween 20 (0.03 % v/v); apply three droplets (15 μl each) of each inducer on the first leaflets and treat control plant leaves similarly with sterile water + Tween 20.

  2. ii.

    Inoculate plants at 5 days after treatment with inducers by dusting freshly collected urediospores of Uromyces pisi (2 mg of spores/plant) mixed with talc (1:10) using a spore settling tower; incubate the plants for 24 h at 20 ± 2 °C in complete darkness and 100 % RH and place the plants in growth chamber for development of disease symptoms.

8.3.2 B. Examination Under Light Microscope

  1. i.

    At 24 h after inoculation, cut one leaf per plant at first node; lay them individually adaxial surface up, on filter paper dipped on fixative acetic acid/ethanol (1:3, v/v) mixture to remove chlorophyll from the chloroplast membranes; bleach the leaf segments using several changes of the fixative and transfer to filter paper moistened with tap water for at least 2 h, to soften the tissues.

  2. ii.

    Transfer the leaf segments to lactoglycerol (1:1:1, lactic acid/glycerol/water, v/v/v) for at least for 2 h; add a drop of Trypan blue in lactoglycerol (0.1 %, w/v) on a cover glass; place the leaf segment carefully and mount in lactoglycerol on microscope slide.

  3. iii.

    Examine approximately 150 urediospores per leaf sample under the microscope (×40 magnification) and count the number of germinated spores (with germtubes at least as long as the diameter of the spore).

8.3.3 C. Assessment of Disease Severity

  1. i.

    Record the infection frequency (IF) on first, second and third pair of leaves separately by counting the number of pustules/cm2 in a marked area in each leaflet, using a hand lens (×7); convert the number of pustules in the control as equivalent to 100 % and calculate the relative values for the treatments, in relation to that of the control.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Abiotic Biological Control Agents for Crop Disease Management. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6380-7_8

Download citation

Publish with us

Policies and ethics