Skip to main content

Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities

  • Living reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

As a result of their highly confined microscale mode volumes and ultrahigh Q factors, whispering gallery mode (WGM) photonic microcavities have emerged as a promising platform for highly sensitive biosensing and nanoparticle detection. In a WGM microcavity, light recirculation dramatically enhances the interaction strength between the cavity mode field and the analytes. For practical applications of biosensors, increasing the sensing sensitivity, stability, and detection speed and lowering the detection limit are the main focuses of the current research. During the past few years, various WGM microcavity biosensors with different geometries and using different sensing mechanisms have been investigated. Here we make a review of highly sensitive biosensing techniques using high-Q WGM microcavities, including their general principles, sensing mechanisms, sensitivity enhancement methods, and the recent advances made in the field of microcavity-based biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Strutt J (Rayleigh L) (1955) Teoriya zvuka (Theory of sound). Gostekhizdat, Moscow

    Google Scholar 

  2. Aoki T, Dayan B, Wilcut E, Bowen WP, Parkins AS, Kippenberg TJ, Vahala KJ, Kimble HJ (2006) Observation of strong coupling between one atom and a monolithic microresonator. Nature 443:671–674. doi:10.1038/nature05147

    Article  Google Scholar 

  3. Carmon T, Rokhsari H, Yang L, Kippenberg TJ, Vahala KJ (2005) Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys Rev Lett 94:22390. doi:10.1103/PhysRevLett.94.223902

    Article  Google Scholar 

  4. Jiang X-F, Xiao Y-F, Zou C-L, He L, Dong C-H, Li B-B, Li Y, Sun F-W, Yang L, Gong Q (2012) Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater 24:OP260–OP264. doi:10.1002/adma.201201229

    Article  Google Scholar 

  5. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 6:8–26. doi:10.1016/j.aca.2008.05.022

    Article  Google Scholar 

  6. Lam CC, Leung PT, Young K (1992) Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. J Opt Soc Am B Opt Phys B 9:1585–1592. doi:10.1364/JOSAB.9.001585

    Article  Google Scholar 

  7. Braginsky VB, Gorodetsky ML, Ilchenko VS (1989) Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 137:393–397. doi:10.1016/0375-9601(89)90912-2

    Article  Google Scholar 

  8. Vahala KJ (2003) Optical microcavities. Nature 424:839–846. doi:10.1038/nature01939

    Article  Google Scholar 

  9. Spillane SM, Kippenberg TJ, Vahala KJ, Goh KW, Wilcut E, Kimble HJ (2005) Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys Rev A 71:013817. doi:10.1103/PhysRevA.71.013817

    Article  Google Scholar 

  10. Kippenberg TJ, Spillane SM, Vahala KJ (2004) Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl Phys Lett 85:6113–6115. doi:10.1063/1.1833556

    Article  Google Scholar 

  11. Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80:4057–4059. doi:10.1063/1.1482797

    Article  Google Scholar 

  12. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28:272–274. doi:10.1364/OL.28.000272

    Article  Google Scholar 

  13. Noto M, Keng D, Teraoka I, Arnold S (2007) Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys J 92:4466–4472. doi:10.1529/biophysj.106.103200

    Article  Google Scholar 

  14. Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 81:9499–9506. doi:10.1021/ac902006p

    Article  Google Scholar 

  15. Washburn AL, Luchansky MS, Bowman AL, Bailey RC (2010) Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal Chem 82:69–72. doi:10.1021/ac902451b

    Article  Google Scholar 

  16. Gohring JT, Dale PS, Fan X (2010) Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens Actuators B 146:226–230. doi:10.1016/j.snb.2010.01.067

    Article  Google Scholar 

  17. Shopova SI, Sun Y, Rosenberg AT, Fan X (2009) Highly sensitive tuning of coupled optical ring resonators by microfluidics. Microfluid Nanofluid 6:425–429. doi:10.1007/s10404-008-0372-7

    Article  Google Scholar 

  18. Zhang X, Liu L, Xu L (2014) Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme. Appl Phys Lett 104:033703. doi:10.1063/1.4861596

    Article  Google Scholar 

  19. Vollmer F, Arnold S, Keng D (2008) Single virus detection from the reactive shift of a whispering-gallery mode. Proc Natl Acad Sci U S A 105:20701–20704. doi:10.1073/pnas.0808988106

    Article  Google Scholar 

  20. Lu T, Lee H, Chen T, Herchak S, Kim JH, Fraser SE, Flagan RC, Vahala K (2011) High sensitivity nanoparticle detection using optical microcavities. Proc Natl Acad Sci U S A 108:5976–5979. doi:10.1073/pnas.1017962108

    Article  Google Scholar 

  21. Swaim JD, Knittel J, Bowen WP (2013) Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl Phys Lett 102:183106. doi:10.1063/1.4804243

    Article  Google Scholar 

  22. Knittel J, Swaim JD, McAuslan DL, Brawley GA, Bowen WP (2013) Back-scatter based whispering gallery mode sensing. Sci Rep 3:2974. doi:10.1038/srep02974

    Article  Google Scholar 

  23. Zhu J, Özdemir ŞK, Xiao Y-F, Li L, He L, Chen D-R, Yang L (2010) On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon 4:46–49. doi:10.1038/nphoton.2009.237

    Article  Google Scholar 

  24. Yi X, Xiao Y-F, Liu Y-C, Li B-B, Chen Y-L, Li Y, Gong Q (2011) Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys Rev A 83:023803. doi:10.1103/PhysRevA.83.023803

    Article  Google Scholar 

  25. Jin W-L, Yi X, Hu Y-W, Li B-B, Xiao Y-F (2013) Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity. Appl Opt 52:155–161. doi:10.1364/AO.52.000155

    Article  Google Scholar 

  26. Kim W, Özdemir ŞK, Zhu J, He L, Yang L (2010) Demonstration of mode splitting in an optical microcavity in aqueous environment. Appl Phys Lett 97:071111. doi:10.1063/1.3481352

    Article  Google Scholar 

  27. Zhu J, Özdemir ŞK, He L, Chen D-R, Yang L (2011) Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt Express 19:16195–16206. doi:10.1364/OE.19.016195

    Article  Google Scholar 

  28. He L, Özdemir SK, Zhu J, Monifi F, Yılmaz H, Yang L (2013) Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers. New J Phys 13:073030. doi:10.1088/1367-2630/15/7/073030

    Article  Google Scholar 

  29. Xiao Y-F, Liu Y-C, Li B-B, Chen Y-L, Li Y, Gong Q (2012) Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys Rev A 85:031805(R). doi:10.1103/PhysRevA.85.031805

    Article  Google Scholar 

  30. Swaim JD, Knittel J, Bowen WP (2011) Detection limits in whispering gallery biosensors with plasmonic enhancement. Appl Phys Lett 99:243109. doi:10.1063/1.3669398

    Article  Google Scholar 

  31. Shopova SI, Rajmangal R, Holler S, Arnold S (2011) Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett 98:243104. doi:10.1063/1.3599584

    Article  Google Scholar 

  32. Dantham VR, Holler S, Kolchenko V, Wan Z, Arnold S (2012) Taking whispering gallery-mode single virus detection and sizing to the limit. Appl Phys Lett 101:043704. doi:10.1063/1.4739473

    Article  Google Scholar 

  33. Santiago-Cordoba MA, Boriskina SV, Vollmer F, Demirel MC (2011) Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl Phys Lett 99:073701. doi:10.1063/1.3599706

    Article  Google Scholar 

  34. Santiago-Cordoba MA, Cetinkaya M, Boriskina SV, Vollmer F, Demirel MC (2012) Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. J Biophotonics 5:629–638. doi:10.1002/jbio.201200040

    Article  Google Scholar 

  35. Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S (2013) Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 13:3347–3351. doi:10.1021/nl401633y

    Article  Google Scholar 

  36. Ahn W, Boriskina SV, Hong Y, Reinhard BM (2012) Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. ACS Nano 6:951–996. doi:10.1021/nn204577v

    Article  Google Scholar 

  37. Xiao Y-F, Zou C-L, Li B-B, Li Y, Dong C-H, Han Z-F, Gong Q (2010) High-Q exterior whispering-gallery modes in a metal-coated microresonator. Phys Rev Lett 105:153902. doi:10.1103/PhysRevLett.105.153902

    Article  Google Scholar 

  38. Yu X, Shi L, Han D, Zi J, Braun PV (2010) High quality factor metallodielectric hybrid plasmonic–photonic crystals. Adv Funct Mater 20:1910–1916. doi:10.1002/adfm.201000135

    Article  Google Scholar 

  39. Chamanzar M, Soltani M, Momeni B, Yegnanarayanan S, Adibi A (2010) Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl Phys B Lasers Opt 101:263–271. doi:10.1007/s00340-010-4034-6

    Article  Google Scholar 

  40. Song Y, Wang J, Yan M, Qiu M (2011) Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. J Opt 13:075001. doi:10.1088/2040-8978/13/7/075001

    Article  Google Scholar 

  41. Zhou L, Sun X, Li X, Chen J (2011) Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors 11:6856–6867. doi:10.3390/s110706856

    Article  Google Scholar 

  42. Xiao Y-F, Li B-B, Jiang X, Hu X, Li Y, Gong Q (2010) High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B At Mol Opt Phys 43:035402. doi:10.1088/0953-4075/43/3/035402

    Article  Google Scholar 

  43. Hu Y-W, Li B-B, Liu Y-X, Xiao Y-F, Gong Q (2013) Hybrid photonic–plasmonic mode for refractometer and nanoparticle trapping. Opt Commun 291:380–385. doi:10.1016/j.optcom.2012.11.024

    Article  Google Scholar 

  44. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878. doi:10.1103/PhysRev.124.1866

    Article  MATH  Google Scholar 

  45. Totsuka K, Kobayashi N, Tomita M (2007) Slow light in coupled-resonator-induced transparency. Phys Rev Lett 98:213904. doi:10.1103/PhysRevLett.98.213904

    Article  Google Scholar 

  46. Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M (2006) Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 96:123901. doi:10.1103/PhysRevLett.96.123901

    Article  Google Scholar 

  47. Xiao Y-F, He L, Zhu J, Yang L (2009) Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid. Appl Phys Lett 94:231115. doi:10.1063/1.3149697

    Article  Google Scholar 

  48. Dong C-H, Zou C-L, Xiao Y-F, Cui J-M, Han Z-F, Guo G-C (2009) Modified transmission spectrum induced by two-mode interference in a single silica microsphere. J Phys B Mol Opt Phys 42:215401. doi:10.1088/0953-4075/42/21/215401

    Article  Google Scholar 

  49. Li B-B, Xiao Y-F, Zou C-L, Liu Y-C, Jiang X-F, Chen Y-L, Li Y, Gong Q (2011) Experimental observation of Fano resonance in a single whispering-gallery microresonator. Appl Phys Lett 98:021116. doi:10.1063/1.3541884

    Article  Google Scholar 

  50. Fan S (2002) Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett 80:908–910. doi:10.1063/1.1448174

    Article  Google Scholar 

  51. Liang W, Yang L, Poon JKS, Huang Y, Vahala KJ, Yariv A (2006) Transmission characteristics of a Fabry–Perot etalon–microtoroid resonator coupled system. Opt Lett 31:510–512. doi:10.1364/OL.31.000510

    Article  Google Scholar 

  52. Li B-B, Xiao Y-F, Zou C-L, Jiang X-F, Liu Y-C, Sun F-W, Li Y, Gong Q (2012) Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl Phys Lett 100:021108. doi:10.1063/1.3675571

    Article  Google Scholar 

  53. Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F (2009) Whispering gallery mode carousel – a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express 17:6230–6238. doi:10.1364/OE.17.006230

    Article  Google Scholar 

  54. Yang J, Guo LJ (2006) Optical sensors based on active microcavities. IEEE J Sel Top Quant Electron 12:143–147. doi:10.1109/JSTQE.2005.862953

    Article  Google Scholar 

  55. He L, Özdemir SK, Zhu J, Kim W, Yang L (2011) Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol 6:428–432. doi:10.1038/nnano.2011.99

    Article  Google Scholar 

  56. Shao L, Jiang X-F, Yu X-C, Li B-B, Clements WR, Vollmer F, Wang W, Xiao Y-F, Gong QH (2013) Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater 25:5616–5620. doi:10.1002/adma201302572

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 program (Grant No. 2013CB328704) and the NSFC (Grant No. 11222440, Grant No. 11004003, and Grant No. 1121091). YFX was also supported by the Research Fund for the Doctoral Program of Higher Education (Grant No. 20120001110068) and Beijing Natural Science Foundation Program (Grant No. 4132058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Feng Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Li, BB., Yu, XC., Hu, YW., Clements, W., Xiao, YF. (2014). Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6174-2_21-3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6174-2_21-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6174-2

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics