Skip to main content

Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System

  • Chapter
  • First Online:
Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment

Abstract

One of the challenges currently facing neuroscientists is the development of effective therapies based on the advances achieved on basic research. The use of genes as pro-drugs can be faced as an approach to reduce this gap. Furthermore, gene downregulation through the use of antisense strategies, including the recent introduction of RNA interference, is yet another tool with great therapeutic potential.

While viruses have proved to be the most efficient system to mediate the delivery of nucleic acids (mostly DNA), their use in a clinic scenario raises various safety concerns. Additionally, the regional specialization of the nervous system function dictates that a therapeutic intervention may be best achieved by the local and specific delivery of a therapeutic agent. In that sense a targeted delivery may avoid unwanted adverse effects that could result from a more ubiquitous delivery. In this chapter, the alternative strategies being explored to the delivery of nucleic acids (DNA, antisense and siRNA oligonucleotides) to the nervous system will be discussed, with particular focus on biomaterial-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70:353–361

    Article  PubMed  CAS  Google Scholar 

  2. Shy ME (2007) Peripheral neuropathies. In: Goldman L, Ausiello D (eds) Cecil medicine. Saunders Elsevier, Philadelphia

    Google Scholar 

  3. Pirart J (1978) Why don’t we teach and treat diabetic patients better? Diabetes Care 1:139–140

    PubMed  CAS  Google Scholar 

  4. von Giesen HJ, Koller H, Hefter H, Arendt G (2002) Central and peripheral nervous system functions are independently disturbed in HIV-1 infected patients. J Neurol 249:754–758

    Article  Google Scholar 

  5. Apfel SC (1999) Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 9:393–413

    Article  PubMed  CAS  Google Scholar 

  6. Hughes RA (2002) Peripheral neuropathy. BMJ 324:466–469

    Article  PubMed  Google Scholar 

  7. Calcutt NA, Jolivalt CG, Fernyhough P (2008) Growth factors as therapeutics for diabetic neuropathy. Curr Drug Targets 9:47–59

    Article  PubMed  CAS  Google Scholar 

  8. Schulte-Herbruggen O, Braun A, Rochlitzer S, Jockers-Scherubl MC, Hellweg R (2007) Neurotrophic factors – a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 14:2318–2329

    Article  PubMed  CAS  Google Scholar 

  9. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    Article  PubMed  CAS  Google Scholar 

  10. Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE (2007) The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4:143–151

    Article  PubMed  CAS  Google Scholar 

  11. Wurdinger T, Tannous BA (2009) Glioma angiogenesis: towards novel RNA therapeutics. Cell Adh Migr 3:230–235

    Article  PubMed  Google Scholar 

  12. Otsuka S, Adamson C, Sankar V, Gibbs KM, Kane-Goldsmith N, Ayer J, Babiarz J, Kalinski H, Ashush H, Alpert E, Lahav R, Feinstein E, Grumet M (2011) Delayed intrathecal delivery of RhoA siRNA to the contused spinal cord inhibits allodynia, preserves white matter, and increases serotonergic fiber growth. J Neurotrauma 28:1063–1076

    Article  PubMed  Google Scholar 

  13. Gene therapy clinical trials worldwide (February 2012) J Gen Med, Wiley. http://www.wiley.com/legacy/wileychi/genmed/clinical/. Accessed 7 Jan 2013

  14. Ledley FD (1996) Pharmaceutical approach to somatic gene therapy. Pharm Res 13:1595–1614

    Article  PubMed  CAS  Google Scholar 

  15. Arzumanov A, Walsh AP, Rajwanshi VK, Kumar R, Wengel J, Gait MJ (2001) Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry 40:14645–14654

    Article  PubMed  CAS  Google Scholar 

  16. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279:17181–17189

    Article  PubMed  CAS  Google Scholar 

  17. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    Article  PubMed  CAS  Google Scholar 

  18. Achenbach JC, Chiuman W, Cruz RP, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336

    Article  PubMed  CAS  Google Scholar 

  19. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  20. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  21. Carbone GM, McGuffie EM, Collier A, Catapano CV (2003) Selective inhibition of transcription of the Ets2 gene in prostate cancer cells by a triplex-forming oligonucleotide. Nucleic Acids Res 31:833–843

    Article  PubMed  CAS  Google Scholar 

  22. Hewett PW, Daft EL, Laughton CA, Ahmad S, Ahmed A, Murray JC (2006) Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol Med 12:8–16

    Article  PubMed  CAS  Google Scholar 

  23. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90:8673–8677

    Article  PubMed  CAS  Google Scholar 

  24. Bauman J, Jearawiriyapaisarn N, Kole R (2009) Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 19:1–13

    Article  PubMed  CAS  Google Scholar 

  25. Mahato RI, Smith LC, Rolland A (1999) Pharmaceutical perspectives of nonviral gene therapy. Adv Genet 41:95–156

    Article  PubMed  CAS  Google Scholar 

  26. Mahato RI, Takakura Y, Hashida M (1997) Nonviral vectors for in vivo gene delivery: physicochemical and pharmacokinetic considerations. Crit Rev Ther Drug Carrier Syst 14:133–172

    Article  PubMed  CAS  Google Scholar 

  27. Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78:259–266

    Article  PubMed  CAS  Google Scholar 

  28. Palu G, Bonaguro R, Marcello A (1999) In pursuit of new developments for gene therapy of human diseases. J Biotechnol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  29. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  PubMed  CAS  Google Scholar 

  30. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    PubMed  CAS  Google Scholar 

  31. Dropulic B (2001) Lentivirus in the clinic. Mol Ther 4:511–512

    Article  PubMed  CAS  Google Scholar 

  32. Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM Jr, Sauter SL, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL (2002) Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 99:6216–6221

    Article  PubMed  CAS  Google Scholar 

  33. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S, Bordignon C, Naldini L (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    PubMed  CAS  Google Scholar 

  34. Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro MG, Naldini L, Lowenstein PR (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 16:741–751

    Article  PubMed  CAS  Google Scholar 

  35. Lundberg C, Bjorklund T, Carlsson T, Jakobsson J, Hantraye P, Déglon N, Kirik D (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8:461–473

    Article  PubMed  CAS  Google Scholar 

  36. Tannemaat MR, Eggers R, Hendriks WT, de Ruiter GC, van Heerikhuize JJ, Pool CW, Malessy MJ, Boer GJ, Verhaagen J (2008) Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 28:1467–1479

    Article  PubMed  Google Scholar 

  37. Lattanzi A, Neri M, Maderna C, di Girolamo I, Martino S, Orlacchio A, Amendola M, Naldini L, Gritti A (2010) Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 19:2208–2227

    Article  PubMed  CAS  Google Scholar 

  38. Tosi J, Sancho-Pelluz J, Davis RJ, Hsu CW, Wolpert KV, Sengillo JD, Lin CS, Tsang SH (2011) Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. Exp Biol Med (Maywood) 236:1211–1217

    Article  CAS  Google Scholar 

  39. Akli S, Caillaud C, Vigne E, Stratford-Perricaudet LD, Poenaru L, Perricaudet M, Kahn A, Peschanski MR (1993) Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 3:224–228

    Article  PubMed  CAS  Google Scholar 

  40. Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 3:219–223

    Article  PubMed  CAS  Google Scholar 

  41. Boulis NM, Turner DE, Dice JA, Bhatia V, Feldman EL (1999) Characterization of adenoviral gene expression in spinal cord after remote vector delivery. Neurosurgery 45:131–137, discussion 137–138

    Article  PubMed  CAS  Google Scholar 

  42. Miwa H, Shibata M, Okado H, Hirano S (2001) Tracing axons in the peripheral nerve using lacZ gene recombinant adenovirus and its application to regeneration of the peripheral nerve. J Neuropathol Exp Neurol 60:671–675

    PubMed  CAS  Google Scholar 

  43. Boulis NM, Turner DE, Imperiale MJ, Feldman EL (2002) Neuronal survival following remote adenovirus gene delivery. J Neurosurg 96:212–219

    PubMed  CAS  Google Scholar 

  44. Millecamps S, Mallet J, Barkats M (2002) Adenoviral retrograde gene transfer in motoneurons is greatly enhanced by prior intramuscular inoculation with botulinum toxin. Hum Gene Ther 13:225–232

    Article  PubMed  CAS  Google Scholar 

  45. Sweigard JH, Cashman SM, Kumar-Singh R (2010) Adenovirus vectors targeting distinct cell types in the retina. Invest Ophthalmol Vis Sci 51:2219–2228

    Article  PubMed  Google Scholar 

  46. Kusano K, Enomoto M, Hirai T, Wakabayashi Y, Itoh S, Ichinose S, Okabe S, Shinomiya K, Okawa A (2011) Enhancement of sciatic nerve regeneration by adenovirus-mediated expression of dominant negative RhoA and Rac1. Neurosci Lett 492:64–69

    Article  PubMed  CAS  Google Scholar 

  47. Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9:1181–1186

    Article  PubMed  CAS  Google Scholar 

  48. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107

    Article  PubMed  CAS  Google Scholar 

  49. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 97:3428–3432

    Article  PubMed  CAS  Google Scholar 

  50. Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage FH, Peterson DA (2002) Targeted retrograde gene delivery for neuronal protection. Mol Ther 5:50–56

    Article  PubMed  CAS  Google Scholar 

  51. Boulis NM, Willmarth NE, Song DK, Feldman EL, Imperiale MJ (2003) Intraneural colchicine inhibition of adenoviral and adeno-associated viral vector remote spinal cord gene delivery. Neurosurgery 52:381–387, discussion 387

    Article  PubMed  Google Scholar 

  52. Lu YY, Wang LJ, Muramatsu S, Ikeguchi K, Fujimoto K, Okada T, Mizukami H, Matsushita T, Hanazono Y, Kume A, Nagatsu T, Ozawa K, Nakano I (2003) Intramuscular injection of AAV-GDNF results in sustained expression of transgenic GDNF, and its delivery to spinal motoneurons by retrograde transport. Neurosci Res 45:33–40

    Article  PubMed  CAS  Google Scholar 

  53. Ehlert EM, Eggers R, Niclou SP, Verhaagen J (2010) Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci 11:20

    Article  PubMed  CAS  Google Scholar 

  54. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ, Boulis NM, Federici T (2011) Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 22:1129–1135

    Article  PubMed  CAS  Google Scholar 

  55. Geller AI, Freese A (1990) Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase. Proc Natl Acad Sci USA 87:1149–1153

    Article  PubMed  CAS  Google Scholar 

  56. Fink DJ, Sternberg LR, Weber PC, Mata M, Goins WF, Glorioso JC (1992) In vivo expression of beta-galactosidase in hippocampal neurons by HSV-mediated gene transfer. Hum Gene Ther 3:11–19

    Article  PubMed  CAS  Google Scholar 

  57. Mata M, Zhang M, Hu X, Fink DJ (2001) HveC (nectin-1) is expressed at high levels in sensory neurons, but not in motor neurons, of the rat peripheral nervous system. J Neurovirol 7:476–480

    Article  PubMed  CAS  Google Scholar 

  58. Latchman DS (2001) Gene delivery and gene therapy with herpes simplex virus-based vectors. Gene 264:1–9

    Article  PubMed  CAS  Google Scholar 

  59. Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS, Coffin RS (2001) Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75:4343–4356

    Article  PubMed  CAS  Google Scholar 

  60. Perez MCP, Hunt SP, Coffin RS, Palmer JA (2004) Comparative analysis of genomic HSV vectors for gene delivery to motor neurons following peripheral inoculation in vivo. Gene Ther 11:1023–1032

    Article  PubMed  CAS  Google Scholar 

  61. Anesti AM, Peeters PJ, Royaux I, Coffin RS (2008) Efficient delivery of RNA interference to peripheral neurons in vivo using herpes simplex virus. Nucleic Acids Res 36:e86

    Article  PubMed  CAS  Google Scholar 

  62. Fink DJ, Wechuck J, Mata M, Glorioso JC, Goss J, Krisky D, Wolfe D (2011) Gene therapy for pain: results of a phase I clinical trial. Ann Neurol 70:207–212

    Article  PubMed  CAS  Google Scholar 

  63. Glorioso JC, Fink DJ (2009) Herpes vector-mediated gene transfer in the treatment of chronic pain. Mol Ther 17:13–18

    Article  PubMed  CAS  Google Scholar 

  64. Lentz TB, Gray SJ, Samulski RJ (2012) Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48:179–188

    Article  PubMed  CAS  Google Scholar 

  65. Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389:239–242

    Article  PubMed  CAS  Google Scholar 

  66. Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev Genet 1:91–99

    Article  PubMed  CAS  Google Scholar 

  67. Dobbelstein M (2003) Viruses in therapy – royal road or dead end? Virus Res 92:219–221

    Article  PubMed  CAS  Google Scholar 

  68. Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17:295–304

    Article  PubMed  CAS  Google Scholar 

  69. Meyers G, Rumenapf T, Tautz N, Dubovi EJ, Thiel HJ (1991) Insertion of cellular sequences in the genome of bovine viral diarrhea virus. Arch Virol Suppl 3:133–142

    Article  PubMed  CAS  Google Scholar 

  70. Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  PubMed  CAS  Google Scholar 

  71. Dietz GP, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27:85–131

    Article  PubMed  CAS  Google Scholar 

  72. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z (2004) Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 100:165–180

    Article  PubMed  CAS  Google Scholar 

  73. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  PubMed  CAS  Google Scholar 

  74. Behr JP (1994) Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem 5:382–389

    Article  PubMed  CAS  Google Scholar 

  75. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  76. Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    PubMed  CAS  Google Scholar 

  77. Remy JS, Sirlin C, Vierling P, Behr JP (1994) Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem 5:647–654

    Article  PubMed  CAS  Google Scholar 

  78. Gao X, Huang L (1995) Cationic liposome-mediated gene transfer. Gene Ther 2:710–722

    PubMed  CAS  Google Scholar 

  79. Balasubramaniam RP, Bennett MJ, Aberle AM, Malone JG, Nantz MH, Malone RW (1996) Structural and functional analysis of cationic transfection lipids: the hydrophobic domain. Gene Ther 3:163–172

    PubMed  CAS  Google Scholar 

  80. Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA (1996) pH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nat Biotechnol 14:760–764

    Article  PubMed  CAS  Google Scholar 

  81. Stephan DJ, Yang ZY, San H, Simari RD, Wheeler CJ, Felgner PL, Gordon D, Nabel GJ, Nabel EG (1996) A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Hum Gene Ther 7:1803–1812

    Article  PubMed  CAS  Google Scholar 

  82. Lee RJ, Huang L (1997) Lipidic vector systems for gene transfer. Crit Rev Ther Drug Carrier Syst 14:173–206

    Article  PubMed  CAS  Google Scholar 

  83. Rosenzweig HS, Rakhmanova VA, McIntosh TJ, MacDonald RC (2000) O-Alkyl dioleoylphosphatidylcholinium compounds: the effect of varying alkyl chain length on their physical properties and in vitro DNA transfection activity. Bioconjug Chem 11:306–313

    Article  PubMed  CAS  Google Scholar 

  84. Serikawa T, Suzuki N, Kikuchi H, Tanaka K, Kitagawa T (2000) A new cationic liposome for efficient gene delivery with serum into cultured human cells: a quantitative analysis using two independent fluorescent probes. Biochim Biophys Acta 1467:419–430

    Article  PubMed  CAS  Google Scholar 

  85. Rosenzweig HS, Rakhmanova VA, MacDonald RC (2001) Diquaternary ammonium compounds as transfection agents. Bioconjug Chem 12:258–263

    Article  PubMed  CAS  Google Scholar 

  86. Mendonca LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simoes S (2010) Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug Chem 21:157–168

    Article  PubMed  CAS  Google Scholar 

  87. Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH (2011) Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 6:2567–2580

    Article  PubMed  CAS  Google Scholar 

  88. Brown MD, Schatzlein AG, Uchegbu IF (2001) Gene delivery with synthetic (non viral) carriers. Int J Pharm 229:1–21

    Article  PubMed  CAS  Google Scholar 

  89. Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388

    Article  PubMed  CAS  Google Scholar 

  90. Bennett CF, Chiang MY, Chan H, Shoemaker JE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033

    PubMed  CAS  Google Scholar 

  91. Legendre JY, Szoka FC Jr (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 9:1235–1242

    Article  PubMed  CAS  Google Scholar 

  92. Zhou X, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1189:195–203

    Article  PubMed  CAS  Google Scholar 

  93. Ross PC, Hui SW (1999) Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther 6:651–659

    Article  PubMed  CAS  Google Scholar 

  94. Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294

    Article  PubMed  CAS  Google Scholar 

  95. Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H (2003) Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch Biochem Biophys 410:246–253

    Article  PubMed  CAS  Google Scholar 

  96. Tavitian B, Marzabal S, Boutet V, Kuhnast B, Terrazzino S, Moynier M, Dollé F, Deverre JR, Thierry AR (2002) Characterization of a synthetic anionic vector for oligonucleotide delivery using in vivo whole body dynamic imaging. Pharm Res 19:367–376

    Article  PubMed  CAS  Google Scholar 

  97. Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC (1995) Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA 92:9742–9746

    Article  PubMed  CAS  Google Scholar 

  98. Li S, Rizzo MA, Bhattacharya S, Huang L (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 5:930–937

    Article  PubMed  CAS  Google Scholar 

  99. Dass CR, Choong PF (2006) Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 113:155–163

    Article  PubMed  CAS  Google Scholar 

  100. De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17:113–126

    Article  PubMed  Google Scholar 

  101. El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  102. Garnett MC (1999) Gene-delivery systems using cationic polymers. Crit Rev Ther Drug Carrier Syst 16:147–207

    Article  PubMed  CAS  Google Scholar 

  103. Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432

    PubMed  CAS  Google Scholar 

  104. Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG (1997) Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug Chem 8:81–88

    Article  PubMed  CAS  Google Scholar 

  105. Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH (1998) Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J Control Release 53:289–299

    Article  PubMed  CAS  Google Scholar 

  106. Akinc A, Langer R (2002) Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol Bioeng 78:503–508

    Article  PubMed  CAS  Google Scholar 

  107. Brown MD, Schatzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF (2000) Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem 11:880–891

    Article  PubMed  CAS  Google Scholar 

  108. Pichon C, Goncalves C, Midoux P (2001) Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Deliv Rev 53:75–94

    Article  PubMed  CAS  Google Scholar 

  109. Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10:406–411

    Article  PubMed  CAS  Google Scholar 

  110. Wang CY, Huang L (1984) Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes. Biochemistry 23:4409–4416

    Article  PubMed  CAS  Google Scholar 

  111. Kano A, Moriyama K, Yamano T, Nakamura I, Shimada N, Shimada N, Maruyama A (2011) Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. J Control Release 149:2–7

    Article  PubMed  CAS  Google Scholar 

  112. Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW (1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 6:643–650

    Article  PubMed  CAS  Google Scholar 

  113. Ward CM, Read ML, Seymour LW (2001) Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97:2221–2229

    Article  PubMed  CAS  Google Scholar 

  114. Choi YH, Liu F, Park JS, Kim SW (1998) Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjug Chem 9:708–718

    Article  PubMed  CAS  Google Scholar 

  115. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–379

    Article  PubMed  CAS  Google Scholar 

  116. Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  PubMed  CAS  Google Scholar 

  117. Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF (2002) The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 19:960–967

    Article  PubMed  CAS  Google Scholar 

  118. Shah DS, Sakthivel T, Toth I, Florence AT, Wilderspin AF (2000) DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208:41–48

    Article  PubMed  CAS  Google Scholar 

  119. Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  CAS  Google Scholar 

  120. Santos JL, Oramas E, Pego AP, Granja PL, Tomas H (2009) Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J Control Release 134:141–148

    Article  PubMed  CAS  Google Scholar 

  121. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 93:4897–4902

    Article  PubMed  CAS  Google Scholar 

  122. Lee RJ, Wang S, Low PS (1996) Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta 1312:237–242

    Article  PubMed  Google Scholar 

  123. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    Article  PubMed  CAS  Google Scholar 

  124. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65

    Article  PubMed  CAS  Google Scholar 

  125. Lee JH, Lim YB, Choi JS, Lee Y, Kim TI, Kim HJ, Yoon JK, Kim K, Park JS (2003) Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug Chem 14:1214–1221

    Article  PubMed  CAS  Google Scholar 

  126. Kim TI, Seo HJ, Choi JS, Jang HS, Baek JU, Kim K, Park JS (2004) PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules 5:2487–2492

    Article  PubMed  CAS  Google Scholar 

  127. Gingras M, Raimundo JM, Chabre YM (2007) Cleavable dendrimers. Angew Chem Int Ed Engl 46:1010–1070

    Article  PubMed  CAS  Google Scholar 

  128. Medina SH, El-Sayed ME (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  PubMed  CAS  Google Scholar 

  129. Ma XP, Tang JB, Shen YQ, Fan MH, Tang HD, Radosz M (2009) Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. J Am Chem Soc 131:14795–14803

    Article  PubMed  CAS  Google Scholar 

  130. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  131. Dheur S, Saison-Behmoaras TE (2000) Polyethyleneimine-mediated transfection to improve antisense activity of 3′-capped phosphodiester oligonucleotides. Methods Enzymol 313:56–73

    Article  PubMed  CAS  Google Scholar 

  132. Han S, Mahato RI, Sung YK, Kim SW (2000) Development of biomaterials for gene therapy. Mol Ther 2:302–317

    Article  PubMed  CAS  Google Scholar 

  133. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  PubMed  CAS  Google Scholar 

  134. Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W, Wagner E (1999) Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1:111–120

    Article  PubMed  CAS  Google Scholar 

  135. Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275

    Article  PubMed  CAS  Google Scholar 

  136. Shin JY, Suh D, Kim JM, Choi HG, Kim JA, Ko JJ, Lee YB, Kim JS, Oh YK (2005) Low molecular weight polyethylenimine for efficient transfection of human hematopoietic and umbilical cord blood-derived CD34+ cells. Biochim Biophys Acta 1725:377–384

    Article  PubMed  CAS  Google Scholar 

  137. Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM (2005) Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res 22:373–380

    Article  PubMed  CAS  Google Scholar 

  138. Lampela P, Raisanen J, Mannisto PT, Yla-Herttuala S, Raasmaja A (2002) The use of low-molecular-weight PEIs as gene carriers in the monkey fibroblastoma and rabbit smooth muscle cell cultures. J Gene Med 4:205–214

    Article  PubMed  Google Scholar 

  139. Dunlap DD, Maggi A, Soria MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095–3101

    Article  PubMed  CAS  Google Scholar 

  140. Reschel T, Konak C, Oupicky D, Seymour LW, Ulbrich K (2002) Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J Control Release 81:201–217

    Article  PubMed  CAS  Google Scholar 

  141. Grayson AC, Doody AM, Putnam D (2006) Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 23:1868–1876

    Article  PubMed  CAS  Google Scholar 

  142. Sundaram S, Lee LK, Roth CM (2007) Interplay of polyethyleneimine molecular weight and oligonucleotide backbone chemistry in the dynamics of antisense activity. Nucleic Acids Res 35:4396–4408

    Article  PubMed  CAS  Google Scholar 

  143. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T (2005) PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug Chem 16:785–792

    Article  PubMed  CAS  Google Scholar 

  144. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E (2005) Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther 11:418–425

    Article  PubMed  CAS  Google Scholar 

  145. Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI (2002) Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3:1197–1207

    Article  PubMed  CAS  Google Scholar 

  146. Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis ME (2004) Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 15:831–840

    Article  PubMed  CAS  Google Scholar 

  147. Mi Bae Y, Choi H, Lee S, Ho Kang S, Tae Kim Y, Nam K, Sang Park J, Lee M, Sig Choi J (2007) Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug Chem 18:2029–2036

    Article  PubMed  CAS  Google Scholar 

  148. Creusat G, Zuber G (2008) Tyrosine-modified PEI: a novel and highly efficient vector for siRNA delivery in mammalian cells. Nucleic Acids Symp Ser (Oxf) 52:91–92

    Article  CAS  Google Scholar 

  149. Zaghloul EM, Viola JR, Zuber G, Smith CI, Lundin KE (2010) Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm 7:652–663

    Article  PubMed  CAS  Google Scholar 

  150. Gosselin MA, Guo W, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem 12:989–994

    Article  PubMed  CAS  Google Scholar 

  151. Lee Y, Mo H, Koo H, Park JY, Cho MY, Jin GW, Park JS (2007) Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem 18:13–18

    Article  PubMed  CAS  Google Scholar 

  152. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7:1947–1954

    Article  PubMed  CAS  Google Scholar 

  153. Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25:5293–5301

    Article  PubMed  CAS  Google Scholar 

  154. Barbosa MA, Pêgo AP, Amaral IF (2011) Chitosan. In: Ducheyne P, Hutmacher DW, Kirkpatrick J, Healy K (eds) Comprehensive biomaterials. Elsevier, London

    Google Scholar 

  155. Mumper RJ, Wang J, Clapell JM, Rolland AP (1995) Novel polymeric condensing carriers for gene delivery. Proc Intern Symp Control Release Bioact Mater 22:178–179

    Google Scholar 

  156. Venkatesh S, Smith TJ (1998) Chitosan-membrane interactions and their probable role in chitosan-mediated transfection. Biotechnol Appl Biochem 27(Pt 3):265–267

    PubMed  CAS  Google Scholar 

  157. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    Article  PubMed  CAS  Google Scholar 

  158. Mooren FC, Berthold A, Domschke W, Kreuter J (1998) Influence of chitosan microspheres on the transport of prednisolone sodium phosphate across HT-29 cell monolayers. Pharm Res 15:58–65

    Article  PubMed  CAS  Google Scholar 

  159. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  PubMed  CAS  Google Scholar 

  160. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  PubMed  CAS  Google Scholar 

  161. Borchard G (2001) Chitosans for gene delivery. Adv Drug Deliv Rev 52:145–150

    Article  PubMed  CAS  Google Scholar 

  162. Liu WG, De Yao K (2002) Chitosan and its derivatives – a promising non-viral vector for gene transfection. J Control Release 83:1–11

    Article  Google Scholar 

  163. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57:1–8

    Article  PubMed  CAS  Google Scholar 

  164. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    Article  PubMed  CAS  Google Scholar 

  165. Corsi K, Chellat F, Yahia L, Fernandes JC (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24:1255–1264

    Article  PubMed  CAS  Google Scholar 

  166. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080

    Article  PubMed  CAS  Google Scholar 

  167. Erbacher P, Zou SM, Bettinger T, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    Article  PubMed  CAS  Google Scholar 

  168. Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, Leong KW (2006) PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 17:152–158

    Article  PubMed  CAS  Google Scholar 

  169. Pires LR, Oliveira H, Barrias CC, Sampaio P, Pereira AJ, Maiato H, Simões S, Pêgo AP (2011) Imidazole-grafted chitosan-mediated gene delivery: in vitro study on transfection, intracellular trafficking and degradation. Nanomedicine (Lond) 6:1499–1512

    Article  CAS  Google Scholar 

  170. Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159

    Article  PubMed  CAS  Google Scholar 

  171. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  PubMed  CAS  Google Scholar 

  172. Liu X, Howard KA, Dong M, Andersen MO, Rahbek UL, Johnsen MG, Hansen OC, Besenbacher F, Kjems J (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28:1280–1288

    Article  PubMed  CAS  Google Scholar 

  173. Koping-Hoggard M, Varum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  174. Mittnacht U, Hartmann H, Hein S, Oliveira H, Dong M, Pêgo AP, Kjems J, Howard KA, Schlosshauer B (2010) Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett 10:3933–3939

    Article  PubMed  CAS  Google Scholar 

  175. Gao S, Chen J, Dong L, Ding Z, Yang YH, Zhang J (2005) Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur J Pharm Biopharm 60:327–334

    Article  PubMed  CAS  Google Scholar 

  176. Kim ST, Kim CK (2007) Water-soluble chitosan-based antisense oligodeoxynucleotide of interleukin-5 for treatment of allergic rhinitis. Biomaterials 28:3360–3368

    Article  PubMed  CAS  Google Scholar 

  177. Springate CM, Jackson JK, Gleave ME, Burt HM (2008) Clusterin antisense complexed with chitosan for controlled intratumoral delivery. Int J Pharm 350:53–64

    Article  PubMed  CAS  Google Scholar 

  178. Ozbas-Turan S, Akbuga J, Sezer AD (2010) Topical application of antisense oligonucleotide-loaded chitosan nanoparticles to rats. Oligonucleotides 20:147–153

    Article  PubMed  CAS  Google Scholar 

  179. Dong L, Huang Z, Cai X, Xiang J, Zhu YA, Wang R, Chen J, Zhang J (2011) Localized delivery of antisense oligonucleotides by cationic hydrogel suppresses TNF-alpha expression and endotoxin-induced osteolysis. Pharm Res 28:1349–1356

    Article  PubMed  CAS  Google Scholar 

  180. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  PubMed  CAS  Google Scholar 

  181. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  PubMed  CAS  Google Scholar 

  182. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  PubMed  CAS  Google Scholar 

  183. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 108:10952–10957

    Article  PubMed  CAS  Google Scholar 

  184. Putnam D, Langer R (1999) Poly(4-hydroxy-l-proline ester): low-temperature polycondensation and plasmid DNA complexation. Macromolecules 32:3658–3662

    Article  CAS  Google Scholar 

  185. Lim YB, Han SO, Kong HU, Lee Y, Park JS, Jeong B, Kim SW (2000) Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharm Res 17:811–816

    Article  PubMed  CAS  Google Scholar 

  186. Lynn DM, Anderson DG, Putnam D, Langer R (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc 123:8155–8156

    Article  PubMed  CAS  Google Scholar 

  187. Tzeng SY, Guerrero-Cazares H, Martinez EE, Sunshine JC, Quinones-Hinojosa A, Green JJ (2011) Non-viral gene delivery nanoparticles based on poly(beta-amino esters) for treatment of glioblastoma. Biomaterials 32:5402–5410

    Article  PubMed  CAS  Google Scholar 

  188. Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573

    Article  PubMed  CAS  Google Scholar 

  189. Lo EH, Singhal AB, Torchilin VP, Abbott NJ (2001) Drug delivery to damaged brain. Brain Res Brain Res Rev 38:140–148

    Article  PubMed  CAS  Google Scholar 

  190. Wiethoff CM, Smith JG, Koe GS, Middaugh CR (2001) The potential role of proteoglycans in cationic lipid-mediated gene delivery. Studies of the interaction of cationic lipid-DNA complexes with model glycosaminoglycans. J Biol Chem 276:32806–32813

    Article  PubMed  CAS  Google Scholar 

  191. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6:585–594

    Article  PubMed  CAS  Google Scholar 

  192. Oupicky D, Konak C, Dash PR, Seymour LW, Ulbrich K (1999) Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block. Bioconjug Chem 10:764–772

    Article  PubMed  CAS  Google Scholar 

  193. Ruponen M, Yla-Herttuala S, Urtti A (1999) Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta 1415:331–341

    Article  PubMed  CAS  Google Scholar 

  194. Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93:12349–12354

    Article  PubMed  CAS  Google Scholar 

  195. Mounkes LC, Zhong W, Cipres-Palacin G, Heath TD, Debs RJ (1998) Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem 273:26164–26170

    Article  PubMed  CAS  Google Scholar 

  196. Ruponen M, Honkakoski P, Tammi M, Urtti A (2004) Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer. J Gene Med 6:405–414

    Article  PubMed  CAS  Google Scholar 

  197. Pratten MK, Cable HC, Ringsdorf H, Lloyd JB (1982) Adsorptive pinocytosis of polycationic copolymers of vinylpyrrolidone with vinylamine by rat yolk sac and rat peritoneal macrophage. Biochim Biophys Acta 719:424–430

    Article  PubMed  CAS  Google Scholar 

  198. Ghinea N, Hasu M (1986) Charge effect on binding, uptake and transport of ferritin through fenestrated endothelium. J Submicrosc Cytol 18:647–659

    PubMed  CAS  Google Scholar 

  199. Zuhorn IS, Kalicharan R, Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277:18021–18028

    Article  PubMed  CAS  Google Scholar 

  200. Friend DS, Papahadjopoulos D, Debs RJ (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278:41–50

    Article  PubMed  Google Scholar 

  201. Matsui H, Johnson LG, Randell SH, Boucher RC (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J Biol Chem 272:1117–11126

    Article  PubMed  CAS  Google Scholar 

  202. Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP (1996) An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther 3:1010–1017

    PubMed  CAS  Google Scholar 

  203. Harbottle RP, Cooper RG, Hart SL, Ladhoff A, McKay T, Knight AM, Wagner E, Miller AD, Coutelle C (1998) An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum Gene Ther 9:1037–1047

    Article  PubMed  CAS  Google Scholar 

  204. Gottschalk S, Cristiano RJ, Smith LC, Woo SL (1994) Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Ther 1:185–191

    PubMed  CAS  Google Scholar 

  205. Hofland HE, Masson C, Iginla S, Osetinsky I, Reddy JA, Leamon CP, Scherman D, Bessodes M, Wils P (2002) Folate-targeted gene transfer in vivo. Mol Ther 5:739–744

    Article  PubMed  CAS  Google Scholar 

  206. Turk MJ, Reddy JA, Chmielewski JA, Low PS (2002) Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta 1559:56–68

    Article  PubMed  CAS  Google Scholar 

  207. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642

    Article  PubMed  CAS  Google Scholar 

  208. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  PubMed  CAS  Google Scholar 

  209. Prabha S, Zhou WZ, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115

    Article  PubMed  CAS  Google Scholar 

  210. Xu DM, Yao SD, Liu YB, Sheng KL, Hong J, Gong PJ, Dong L (2007) Size-dependent properties of M-PEIs nanogels for gene delivery in cancer cells. Int J Pharm 338:291–296

    Article  PubMed  CAS  Google Scholar 

  211. Cho CW, Cho YS, Lee HK, Yeom YI, Park SN, Yoon DY (2000) Improvement of receptor-mediated gene delivery to HepG2 cells using an amphiphilic gelling agent. Biotechnol Appl Biochem 32(Pt 1):21–26

    Article  PubMed  CAS  Google Scholar 

  212. Stankovics J, Crane AM, Andrews E, Wu CH, Wu GY, Ledley FD (1994) Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Hum Gene Ther 5:1095–1104

    Article  PubMed  CAS  Google Scholar 

  213. Wu GY, Wu CH (1988) Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry 27:887–892

    Article  PubMed  CAS  Google Scholar 

  214. Gour N, Purohit CS, Verma S, Puri R, Ganesh S (2009) Mannosylated self-assembled structures for molecular confinement and gene delivery applications. Biochem Biophys Res Commun 378:503–506

    Article  PubMed  CAS  Google Scholar 

  215. Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 359:280–287

    Article  PubMed  CAS  Google Scholar 

  216. Kim TH, Jiang HL, Nah JW, Cho MH, Akaike T, Cho CS (2007) Receptor-mediated gene delivery using chemically modified chitosan. Biomed Mater 2:S95–S100

    Article  PubMed  CAS  Google Scholar 

  217. Satoh T, Kakimoto S, Kano H, Nakatani M, Shinkai S, Nagasaki T (2007) In vitro gene delivery to HepG2 cells using galactosylated 6-amino-6-deoxychitosan as a DNA carrier. Carbohydr Res 342:1427–1433

    Article  PubMed  CAS  Google Scholar 

  218. Hashimoto M, Morimoto M, Saimoto H, Shigemasa Y, Sato T (2006) Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug Chem 17:309–316

    Article  PubMed  CAS  Google Scholar 

  219. Cook SE, Park IK, Kim EM, Jeong HJ, Park TG, Choi YJ, Akaike T, Cho CS (2005) Galactosylated polyethylenimine-graft-poly(vinyl pyrrolidone) as a hepatocyte-targeting gene carrier. J Control Release 105:151–163

    Article  PubMed  CAS  Google Scholar 

  220. Penacho N, Filipe A, Simoes S, Pedroso de Lima MC (2008) Transferrin-associated lipoplexes as gene delivery systems: relevance of mode of preparation and biophysical properties. J Membr Biol 221:141–152

    Article  PubMed  CAS  Google Scholar 

  221. Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–1125

    Article  PubMed  CAS  Google Scholar 

  222. Lee KM, Kim IS, Lee YB, Shin SC, Lee KC, Oh IJ (2005) Evaluation of transferrin-polyethylenimine conjugate for targeted gene delivery. Arch Pharm Res 28:722–729

    Article  PubMed  CAS  Google Scholar 

  223. Nie Y, Zhang Z, Li L, Luo K, Ding H, Gu Z (2009) Synthesis, characterization and transfection of a novel folate-targeted multipolymeric nanoparticles for gene delivery. J Mater Sci Mater Med 20:1849–1857

    Article  PubMed  CAS  Google Scholar 

  224. Cheng H, Zhu JL, Zeng X, Jing Y, Zhang XZ, Zhuo RX (2009) Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity. Bioconjug Chem 20:481–487

    Article  PubMed  CAS  Google Scholar 

  225. Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF, Shuai XT, Peng Y (2008) Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Biophys Res Commun 367:874–880

    Article  PubMed  CAS  Google Scholar 

  226. Lee D, Lockey R, Mohapatra S (2006) Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. J Nanosci Nanotechnol 6:2860–2866

    Article  PubMed  CAS  Google Scholar 

  227. Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E (2001) DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci 3:E21

    Article  PubMed  CAS  Google Scholar 

  228. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    Article  PubMed  CAS  Google Scholar 

  229. De Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  PubMed  Google Scholar 

  230. Wagner E (1999) Application of membrane-active peptides for nonviral gene delivery. Adv Drug Deliv Rev 38:279–289

    Article  PubMed  CAS  Google Scholar 

  231. Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  232. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    Article  PubMed  CAS  Google Scholar 

  233. Dauty E, Verkman AS (2005) Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280:7823–7828

    Article  PubMed  CAS  Google Scholar 

  234. Luby-Phelps K, Castle PE, Taylor DL, Lanni F (1987) Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3 T3 cells. Proc Natl Acad Sci USA 84:4910–4913

    Article  PubMed  CAS  Google Scholar 

  235. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007

    Article  PubMed  CAS  Google Scholar 

  236. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511

    Article  PubMed  CAS  Google Scholar 

  237. Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58:189–200

    Article  PubMed  CAS  Google Scholar 

  238. Mabit H, Nakano MY, Prank U, Saam B, Dohner K, Sodeik B, Greber UF (2002) Intact microtubules support adenovirus and herpes simplex virus infections. J Virol 76:9962–9971

    Article  PubMed  CAS  Google Scholar 

  239. Wilke M, Fortunati E, van den Broek M, Hoogeveen AT, Scholte BJ (1996) Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther 3:1133–1142

    PubMed  CAS  Google Scholar 

  240. Ryan KJ, Wente SR (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr Opin Cell Biol 12:361–371

    Article  PubMed  CAS  Google Scholar 

  241. Featherstone C, Darby MK, Gerace L (1988) A monoclonal antibody against the nuclear pore complex inhibits nucleocytoplasmic transport of protein and RNA in vivo. J Cell Biol 107:1289–1297

    Article  PubMed  CAS  Google Scholar 

  242. Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA (1999) A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci 112(Pt 12):2033–2041

    PubMed  CAS  Google Scholar 

  243. Won YY, Sharma R, Konieczny SF (2009) Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release 139:88–93

    Article  PubMed  CAS  Google Scholar 

  244. Bieber T, Meissner W, Kostin S, Niemann A, Elsasser HP (2002) Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J Control Release 82:441–454

    Article  PubMed  CAS  Google Scholar 

  245. Whittaker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246:1–23

    Article  PubMed  CAS  Google Scholar 

  246. Imamoto N (2000) Diversity in nucleocytoplasmic transport pathways. Cell Struct Funct 25:207–216

    Article  PubMed  CAS  Google Scholar 

  247. Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13:310–319

    Article  PubMed  CAS  Google Scholar 

  248. Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671

    Article  PubMed  CAS  Google Scholar 

  249. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 96:91–96

    Article  PubMed  CAS  Google Scholar 

  250. Chan CK, Jans DA (1999) Enhancement of polylysine-mediated transferrinfection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum Gene Ther 10:1695–1702

    Article  PubMed  CAS  Google Scholar 

  251. Subramanian A, Ranganathan P, Diamond SL (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 17:873–877

    Article  PubMed  CAS  Google Scholar 

  252. Collas P, Husebye H, Alestrom P (1996) The nuclear localization sequence of the SV40 T antigen promotes transgene uptake and expression in zebrafish embryo nuclei. Transgenic Res 5:451–458

    Article  PubMed  CAS  Google Scholar 

  253. Ciolina C, Byk G, Blanche F, Thuillier V, Scherman D, Wils P (1999) Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 10:49–55

    Article  PubMed  CAS  Google Scholar 

  254. van der Aa MA, Koning GA, d’Oliveira C, Oosting RS, Wilschut KJ, Hennink WE, Crommelin DJ (2005) An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J Gene Med 7:208–217

    Article  PubMed  CAS  Google Scholar 

  255. Branden LJ, Mohamed AJ, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787

    Article  PubMed  CAS  Google Scholar 

  256. Shi N, Boado RJ, Pardridge WM (2001) Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 18:1091–1095

    Article  PubMed  CAS  Google Scholar 

  257. Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM (2002) Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 4:183–194

    Article  PubMed  Google Scholar 

  258. Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N, Sasaki T, Black KL, Holler E, Ljubimova JY (2010) Inhibition of brain tumor growth by intravenous poly (beta-L-malic acid) nanobioconjugate with pH-dependent drug release [corrected]. Proc Natl Acad Sci USA 107:18143–18148

    Article  PubMed  CAS  Google Scholar 

  259. Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511

    Article  PubMed  CAS  Google Scholar 

  260. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Régina A, Gabathuler R, Castaigne JP, Béliveau R (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 106:1534–1544

    Article  PubMed  CAS  Google Scholar 

  261. Cardoso AL, Simoes S, de Almeida LP, Plesnila N, Pedroso de Lima MC, Wagner E, Culmsee C (2008) Tf-lipoplexes for neuronal siRNA delivery: a promising system to mediate gene silencing in the CNS. J Control Release 132:113–123

    Article  PubMed  CAS  Google Scholar 

  262. Huang R, Ke W, Liu Y, Jiang C, Pei Y (2008) The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 29:238–246

    Article  PubMed  CAS  Google Scholar 

  263. Huang S, Li J, Han L, Liu S, Ma H, Huang R, Jiang C (2011) Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 32:6832–6838

    Article  PubMed  CAS  Google Scholar 

  264. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    Article  PubMed  CAS  Google Scholar 

  265. Son S, Hwang Do W, Singha K, Jeong JH, Park TG, Lee DS, Kim WJ (2011) RVG peptide tethered bioreducible polyethylenimine for gene delivery to brain. J Control Release 155:18–25

    Article  PubMed  CAS  Google Scholar 

  266. Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, Lou J, Jiang C (2009) Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30:4195–4202

    Article  PubMed  CAS  Google Scholar 

  267. Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, Chen J, Pang Z, Wang Y, Jiang X, Yang VC, Wen L (2011) Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950

    Article  PubMed  CAS  Google Scholar 

  268. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, Jiang C (2010) A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31:5246–5257

    Article  PubMed  CAS  Google Scholar 

  269. Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V (2011) Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target 19:837–845

    Article  PubMed  CAS  Google Scholar 

  270. Martinez-Fong D, Navarro-Quiroga I, Ochoa I, Alvarez-Maya I, Meraz MA, Luna J, Arias-Montaño JA (1999) Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. Brain Res Mol Brain Res 69:249–262

    Article  PubMed  CAS  Google Scholar 

  271. Navarro-Quiroga I, Gonzalez-Barrios JA, Barron-Moreno F, Gonzalez-Bernal V, Martinez-Arguelles DB, Martinez-Fong D (2002) Improved neurotensin-vector-mediated gene transfer by the coupling of hemagglutinin HA2 fusogenic peptide and Vp1 SV40 nuclear localization signal. Brain Res Mol Brain Res 105:86–97

    Article  PubMed  CAS  Google Scholar 

  272. Zeng J, Too HP, Ma Y, Luo ES, Wang S (2004) A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery. J Gene Med 6:1247–1256

    Article  PubMed  CAS  Google Scholar 

  273. Zeng J, Wang X, Wang S (2007) Self-assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials 28:1443–1451

    Article  PubMed  CAS  Google Scholar 

  274. Barati S, Hurtado PR, Zhang SH, Tinsley R, Ferguson IA, Rush RA (2006) GDNF gene delivery via the p75(NTR) receptor rescues injured motor neurons. Exp Neurol 202:179–188

    Article  PubMed  CAS  Google Scholar 

  275. Collins L, Asuni AA, Anderton BH, Fabre JW (2003) Efficient gene delivery to primary neuron cultures using a synthetic peptide vector system. J Neurosci Methods 125:113–120

    Article  PubMed  CAS  Google Scholar 

  276. Barrett LB, Berry M, Ying WB, Hodgkin MN, Seymour LW, Gonzalez AM, Read ML, Baird A, Logan A (2004) CTb targeted non-viral cDNA delivery enhances transgene expression in neurons. J Gene Med 6:429–438

    Article  PubMed  CAS  Google Scholar 

  277. Knight A, Carvajal J, Schneider H, Coutelle C, Chamberlain S, Fairweather N (1999) Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. Eur J Biochem 259:762–769

    Article  PubMed  CAS  Google Scholar 

  278. Oliveira H, Fernandez R, Pires LR, Martins MCL, Simoes S, Barbosa MA, Pêgo AP (2010) Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. J Control Release 143:350–358

    Article  PubMed  CAS  Google Scholar 

  279. Oliveira H, Pires LR, Fernandez R, Martins MCL, Simoes S, Pêgo AP (2010) Chitosan-based gene delivery vectors targeted to the peripheral nervous system. J Biomed Mater Res A 95:801–810

    PubMed  Google Scholar 

  280. Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH (2007) Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J Gene Med 9:691–702

    Article  PubMed  CAS  Google Scholar 

  281. Kwon EJ, Lasiene J, Jacobson BE, Park IK, Horner PJ, Pun SH (2010) Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials 31:2417–2424

    Article  PubMed  CAS  Google Scholar 

  282. Liu JJ, Wang CL, Xi Q, Xu J, Deng B, Ding HM, Chu B, Su DH (2011) Dissection of the functional structure of aptamer17, which specifically recognizes differentiated PC12 cells. Nucleic Acid Ther 21:225–229

    PubMed  CAS  Google Scholar 

  283. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273

    Article  PubMed  CAS  Google Scholar 

  284. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70:194–206

    Article  PubMed  Google Scholar 

  285. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  286. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    PubMed  CAS  Google Scholar 

  287. Xia CF, Zhang Y, Boado RJ, Pardridge WM (2007) Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res 24:2309–2316

    Article  PubMed  CAS  Google Scholar 

  288. Xia CF, Boado RJ, Pardridge WM (2009) Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol Pharm 6:747–751

    Article  PubMed  CAS  Google Scholar 

  289. Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45:1766–1775

    PubMed  CAS  Google Scholar 

  290. Bertrand Y, Currie JC, Demeule M, Regina A, Che C, Abulrob A, Fatehi D, Sartelet H, Gabathuler R, Castaigne JP, Stanimirovic D, Béliveau R (2010) Transport characteristics of a novel peptide platform for CNS therapeutics. J Cell Mol Med 14:2827–2839

    Article  PubMed  CAS  Google Scholar 

  291. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861

    PubMed  CAS  Google Scholar 

  292. Kitabgi P, Carraway R, Van Rietschoten J, Granier C, Morgat JL, Menez A, Leeman S, Freychet P (1977) Neurotensin: specific binding to synaptic membranes from rat brain. Proc Natl Acad Sci USA 74:1846–1850

    Article  PubMed  CAS  Google Scholar 

  293. Castel MN, Malgouris C, Blanchard JC, Laduron PM (1990) Retrograde axonal transport of neurotensin in the dopaminergic nigrostriatal pathway in the rat. Neuroscience 36:425–430

    Article  PubMed  CAS  Google Scholar 

  294. Gonzalez-Barrios JA, Lindahl M, Bannon MJ, Anaya-Martinez V, Flores G, Navarro-Quiroga I, Trudeau LE, Aceves J, Martinez-Arguelles DB, Garcia-Villegas R, Jiménez I, Segovia J, Martinez-Fong D (2006) Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol Ther 14:857–865

    Article  PubMed  CAS  Google Scholar 

  295. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  PubMed  CAS  Google Scholar 

  296. Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    Article  PubMed  CAS  Google Scholar 

  297. Ma N, Wu SS, Ma YX, Wang X, Zeng J, Tong G, Huang Y, Wang S (2004) Nerve growth factor receptor-mediated gene transfer. Mol Ther 9:270–281

    Article  PubMed  CAS  Google Scholar 

  298. Rende M, Giambanco I, Buratta M, Tonali P (1995) Axotomy induces a different modulation of both low-affinity nerve growth factor receptor and choline acetyltransferase between adult rat spinal and brainstem motoneurons. J Comp Neurol 363:249–263

    Article  PubMed  CAS  Google Scholar 

  299. Collins L, Gustafsson K, Fabre JW (2000) Tissue-binding properties of a synthetic peptide DNA vector targeted to cell membrane integrins: a possible universal nonviral vector for organ and tissue transplantation. Transplantation 69:1041–1050

    Article  PubMed  CAS  Google Scholar 

  300. Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF (1993) Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 268:1058–1065

    PubMed  CAS  Google Scholar 

  301. Gill DM (1976) The arrangement of subunits in cholera toxin. Biochemistry 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  302. King CA, Van Heyningen WE (1973) Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J Infect Dis 127:639–647

    Article  PubMed  CAS  Google Scholar 

  303. Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188:945–947

    Article  PubMed  CAS  Google Scholar 

  304. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  PubMed  CAS  Google Scholar 

  305. Halpern JL, Neale EA (1995) Neurospecific binding, internalization, and retrograde axonal transport. Curr Top Microbiol Immunol 195:221–241

    Article  PubMed  CAS  Google Scholar 

  306. Figueiredo DM, Hallewell RA, Chen LL, Fairweather NF, Dougan G, Savitt JM, Parks DA, Fishman PS (1997) Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp Neurol 145:546–554

    Article  PubMed  CAS  Google Scholar 

  307. Fishman PS, Savitt JM, Farrand DA (1990) Enhanced CNS uptake of systemically administered proteins through conjugation with tetanus C-fragment. J Neurol Sci 98:311–325

    Article  PubMed  CAS  Google Scholar 

  308. Coen L, Osta R, Maury M, Brulet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci USA 94:9400–9405

    Article  PubMed  CAS  Google Scholar 

  309. Liu JK, Tenga QS, Garrity-Moses M, Federici T, Tanase D, Imperiale MJ, Boulis NM (2005) A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol Dis 19:407–418

    Article  PubMed  CAS  Google Scholar 

  310. Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640

    Article  PubMed  CAS  Google Scholar 

  311. Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206–4214

    Article  PubMed  CAS  Google Scholar 

  312. Zhou J, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10

    Article  PubMed  CAS  Google Scholar 

  313. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO II, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed  CAS  Google Scholar 

  314. Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE and the Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia (contracts PTDC/CTM-NAN/115124/2009, HMSP-ICT/0020/2010 and PEst-C/SAU/LA0002/2011) that supported this work. PM is supported by a FCT post-doctoral fellowship (SFRH/BPD/76936/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Pêgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pêgo, A.P., Oliveira, H., Moreno, P.M. (2013). Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics