Skip to main content

Soil Resources and Soil Degradation

  • Chapter
  • First Online:
Soils

Abstract

The total land area of the world is estimated to be 130,575,894 km2, including rocky surfaces, deserts, ice-covered areas, and lands with soil. Only about 12 % land is suitable for agricultural crop production without much limitation, 24 % is used for grazing, and 31 % is occupied by forests. The remaining 33 % has too many constraints for most uses. Not all agricultural soils are fertile and productive. Some soils are naturally unproductive; some are arid and saline; some are very sandy and dry; some are wet and waterlogged for most of the growing season. Some soils have been degraded by human activity. Recent estimates suggest that land degradation affects 3,500 M ha or 23.5 % of the Earth’s land area and impacts 1.5 billion people. GLASOD recognizes five types of soil degradation processes—water erosion, wind erosion, chemical deterioration, physical deterioration, and degradation of biological activity. Soil erosion along with compaction and surface sealing is considered to be a physical degradation process. There are on-site and off-site effects of water and wind erosion. These processes may also lead to desertification in arid and semiarid regions. Many soils have been salinized by soil mismanagement, including modification of hydrology through irrigation and drainage. Some soils have been polluted by organic and inorganic pollutants. Degraded soils need sustainable management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo F, Pizzul L, Castillo MP, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80(3):271–278

    Article  CAS  Google Scholar 

  • Adefila EO, Onwordi CT, Ogunwande IA (2010) Level of heavy metals uptake on vegetables planted on poultry droppings dumpsite. Arch Appl Sci Res 2(1):347–353

    CAS  Google Scholar 

  • Adriano DC, Bolan NS, Vangronsveld J, Wenzel WW (2005) Heavy metals. Encyclopedia of soils in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Ahn CK, Kim YM, Woo SH, Park JM (2008) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154:153–160

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, an Imprint of Chapman & Hall, London

    Google Scholar 

  • Alloway BJ, Tills AR, Morgan H (1985) The speciation and availability of cadmium and lead in polluted soils. In: Hemphill DD (ed) Trace substances in environmental health, vol 18. University of Missouri, Columbia

    Google Scholar 

  • Angle JS, Heckman JR (1986) Effect of soil pH and sewage sludge on VA mycorrhizal infection of soybeans. Plant Soil 93(3):437

    Article  Google Scholar 

  • Aswathanarayana U (1999) Soil resources and the environment. Oxford/IBH Publishing Co. Pvt. Ltd, New Delhi

    Google Scholar 

  • ATSDR (1999) Toxicological profile for mercury. Agency for Toxic Substances and Disease Registry. Available from: http://www.atsdr.cdc.gov/toxprofiles/tp46-p.pdf

  • Aydinalp C, Marinova S (2003) Distribution and forms of heavy metals in some agricultural soils. Pol J Environ Stud 12(5):629–633

    CAS  Google Scholar 

  • Bagdatlioglu N, Nergiz C, Ergonul PG (2010) Heavy metal levels in leafy vegetables and some selected fruits. J Consum Prot Food Saf 5:421–428

    CAS  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manage 24:223–234

    Article  Google Scholar 

  • Baryła A, Pierzgalski E (2008) Ridged terraces – functions, construction and use. J Environ Eng Landsc Manage 16(2):Ia–If

    Google Scholar 

  • Beinroth FH, Eswaran H, Reich PF, Van Den Berg E (1994) Land related stresses in agroecosystems. In: Virmani SM, Katyal JC, Eswaran H, Abrol IP (eds) Stressed ecosystems and sustainable agriculture. Oxford/IBH, New Delhi

    Google Scholar 

  • Bell R, Evans CS, Roberts ER (1988) Decreased incidence of mycorrhizal root tips associated with soil heavy-metal enrichment. Plant Soil 106(1):143–145

    Article  CAS  Google Scholar 

  • Biddapa CC, Chino M, Kumazava K (1982) Migration of heavy metals in two Japanese soils. Plant Soil 66(3):299–316

    Article  Google Scholar 

  • Bied-Charreton M (2008) Integrating the combat against desertification and land degradation into negotiations on climate change: a winning strategy. www.csf-desertification.org. Accessed 21 Apr 2011

  • Blaikie P, Brookfield H (1987) Land degradation and society. Methuen, London

    Google Scholar 

  • Blanco H, Lal R (2008) Principles of soil conservation and management. Springer, Dordrecht/London

    Google Scholar 

  • Blum WEH (1997) Soil degradation caused by industrialization and urbanization. In: Proceedings of the international conference on problems of anthropogenic soil formation, Moscow, 16–21 June 1997

    Google Scholar 

  • Bradl HB (2005) Heavy metals in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Bradl HB, Xenidis A (2005) Remediation techniques. In: Bradl HB (ed) Heavy metals in the environment, vol 6. Elsevier/Academic, Amsterdam

    Google Scholar 

  • Brannon JM, Patrick WH Jr (1987) Fixation, transformation, and mobilization of arsenic in sediments. Environ Sci Technol 21:450–459

    Article  CAS  Google Scholar 

  • Bravo O, Silenzi JC (2002) Strip cropping in the semi-arid region of Argentina: control of wind erosion and soil water accumulation. Soil Sci 167:346–352

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Buchauer MJ (1973) Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper and lead. Environ Sci Technol 7:131–135

    Article  CAS  Google Scholar 

  • Buol SW, Eswaran H (1994) Assessment and conquest of poor soils. In: Maranville JW et al (eds) Adaptation of plants to soil stresses, INTSORMIL publication 94–2. University of Nebraska, Lincoln

    Google Scholar 

  • CAC (Codex Alimentarius Commission) (1993) Joint FAO/WHO Food Standards Program

    Google Scholar 

  • CAC (Codex Alimentarius Commission) (2003) Evaluation of certain food additives and contaminants. FAO/WHO, Codex stan 230–2001, Rev 1–2003, Rome

    Google Scholar 

  • Charreau C (1972) Problemes Poses Par L’utilization Agricole Des Sols Tropicaux Par Des Cultures Annuelles. Agronomie Tropicale 27:905–929

    Google Scholar 

  • Chartres CJ, Kirby JM, Raupach M (1989) Poorly ordered silica and aluminosilicates as temporary cementing agents in hard-setting soils. Soil Sci Soc Am J 54(4):1060–1067

    Article  Google Scholar 

  • Chisholm A, Dumsday R (1987) Land degradation: problems and policies. Cambridge University Press, Cambridge

    Google Scholar 

  • Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana, a leaf slice test. New Phytol 158:287–293

    Article  CAS  Google Scholar 

  • Collins YE, Stotzky G (2001) Influence of heavy metals on the electro-kinetic properties of bacteria. Am Soc Microbiol 39:967–980

    Google Scholar 

  • Coskun M, Steinnes E, Viladimirovna F (2006) Heavy metal pollution of surface soil in the Thrace region, Turkey. Environ Moni Assess 119:545–556

    Article  CAS  Google Scholar 

  • Crookes MJ, Howe PD (1993) Environmental hazard assessment. Halogenated naphthalenes. Department of Environment, London

    Google Scholar 

  • Culet P (2002) Desertification. Encyclopedia of life support systems. EOLSS Publishers Co Ltd., Oxford

    Google Scholar 

  • Dan T, Hale B, Johnson D, Conard B, Stiebel B, Veska E (2008) Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Can J Soil Sci 88:389–398

    Article  CAS  Google Scholar 

  • Davarynejad GH, Vatandoost S, Soltesz M, Nyeki J, Szabo Z, Nagy PT (2010) Hazardous element content and consumption risk of 9 apricot cultivars. Int J Hortic Sci 16(4):61–65

    Google Scholar 

  • Davidson CI, Wu Y-L (1990) Dry deposition of particles and vapors. In: Lindberg SE, Page AL, Norton SA (eds) Advances in environmental science: acidic precipitation, vol 3, Sources, deposition, and canopy interactions. Springer, New York

    Google Scholar 

  • Davis A, Drexler JW, Ruby MV, Nicholson A (1993) Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environ Sci Technol 27:1415–1425

    Article  CAS  Google Scholar 

  • Derici MR (2006) Degradation: chemical. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, New York

    Google Scholar 

  • Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increase metal levels. Appl Environ Microbiol 62:2970–2977

    CAS  Google Scholar 

  • Doelman P, Haanstra L (1984) Short-term and long-term effects of Cd, Cr, Cu, Ni, Pb, and Zn on microbial respiration in relation to abiotic soil factors. Plant Soil 79:317–321

    Article  CAS  Google Scholar 

  • Dregne HE (1977) Desertification of arid lands. Econ Geogr 53:329

    Article  Google Scholar 

  • Dudas MJ (1987) Accumulation of native arsenic in acid sulphate soils in Alberta. Can J Soil Sci 67:317–331

    Article  CAS  Google Scholar 

  • Dudas MJ, Pawluk S (1980) Natural abundances and mineralogical partitioning of trace elements in selected Alberta soils. Can J Soil Sci 60:763–771

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Environment Agency (2007) UK soil and herbage pollutant survey. Report no. 7: Environmental concentrations of heavy metals in UK soil and herbage. Environment Agency, Bristol

    Google Scholar 

  • Eriksson J, Hakansson I, Danfors B (1974) The effect of soil compaction on soil structure and crop yields. Bulletin 354. Swedish Institute of Agricultural Engineering, Uppsala

    Google Scholar 

  • Eswaran H, Reich P (1998) Desertification: a global assessment and risks to sustainability. In: Proceedings of 16th International Congress Soil Science, Moutpellier, France

    Google Scholar 

  • Eswaran H, Reich P, Beinroth F (1997) Global distribution of soils with acidity. In: Moniz AZAMC, Furlani RE, Schaffert NK, Fageria CA, Rosolem, Cantarella H (eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Proceedings 4th international symposium on plant-soil interactions at low pH, Belo Horizonte, Minas Gerais, Brazil

    Google Scholar 

  • Eswaran H, Beinroth F, Reich P (1999) Global land resources and population supporting capacity. Am J Altern Agric 14:129–136

    Article  Google Scholar 

  • Fabiola N, Giarola B, da Silva AP, Imhoff S, Dexter AR (2003) Contribution of natural soil compaction on hardsetting behavior. Geoderma 113(1–2):95–108

    Article  Google Scholar 

  • FAO (1998) FAO Production yearbook, vol 52. FAO statistics series no. 148, Rome

    Google Scholar 

  • FAO (2000) Manual on integrated soil management and conservation practices. FAO Land and Water Bulletin 8, Rome

    Google Scholar 

  • Fargasova A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:52

    Google Scholar 

  • Fenn ME, Huntington TG, Mclaughlin SB, Eagar C, Gomez A, Cook RB (2006) Status of soil acidification in North America. J For Sci 52:3–13

    Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    CAS  Google Scholar 

  • Foth HD (1990) Fundamentals of soil science, 8th edn. Wiley, New York

    Google Scholar 

  • Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    Article  CAS  Google Scholar 

  • Fuller WH (1977) Movement of selected metals, asbestos and cyanide in soil: application to waste disposal problem. Solid and Hazardous Waste Research Division, U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Ghadiri H (2004) Crater formation in soils by raindrop impact. Earth Surf Process Landf 29:77–89

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources: human causes, extent, management and case studies. Centre for Resource and Environmental Studies, The Australian National University, Canberra

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Gill WR (1971) Economic assessment of soil compaction. ASAE Monograph, St. Joseph

    Google Scholar 

  • Giller KE, Mcgrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21(6):841–848

    Article  CAS  Google Scholar 

  • Glazer AN, Nikaido H (2007) Microbial biotechnology: fundamentals of applied microbiology, 2nd edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Goi A, Trapido M, Kulik N (2009) Contaminated soil remediation with hydrogen peroxide oxidation. World Acad Sci Eng Technol 52:185–189

    Google Scholar 

  • Gong Z, Wilke B-M, Alef K, Li P, Zhou Q (2006) Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments. Chemosphere 62:780–787

    Article  CAS  Google Scholar 

  • Graetz RD (1996) Empirical and practical approaches to land surface characterisation and change detection. In: Hill J, Peter D (eds) The use of remote sensing for land degradation and desertification monitoring in the Mediterranean Basin. European Commission, Brussels

    Google Scholar 

  • Graffham A (2006) EU legal requirements for imports of fruits and vegetables (a suppliers guide). Fresh Insights No. 1, DFID/IIED/NRI

    Google Scholar 

  • Greene SBR (2005) Hardsetting soils. Encyclopedia of soil science, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Zinc, cadmium and mercury, 2nd edn, Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Gregan PD, Hirth JR, Conyers MK (1989) Amelioration of soil acidity by liming and other amendments. In: Robson AD (ed) Soil acidity and plant growth. Academic, Sydney

    Google Scholar 

  • Gregory JM, Borrelli J (1986) The Texas tech wind erosion equation. Am Soc Agric Eng 86:2528

    Google Scholar 

  • Grewal MS, Kuhad MS (2002) Soil desurfacing–impact on productivity and its management. In: 12th ISCO conference, Beijing

    Google Scholar 

  • Haan FAM, van Riemsdijk WM (1986) Behaviour of inorganic contaminants in soil. In: Assink JW, Van Den Brink WJ (eds) Contaminated soil. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Hamberg R (2009) In situ and on-site soil remediation techniques – a review. Bachelor thesis, Department of Civil and Environmental Engineering, Division of Waste Science and Technology Lulea University of Technology

    Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Ti, Pb, Zn and Rb. Geochim Cosmochim Acta 44:1519–1532

    Article  CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediments below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  Google Scholar 

  • Helyar KR (1991) The management of acid soils. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant–soil interactions at low pH. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hemida SK, Omar SA, Abdel-Mallek AY (1997) Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 95:13–22

    CAS  Google Scholar 

  • Hicks DH, Anthony T (2001) Soil conservation technical handbook. The Ministry for the Environment, Wellington

    Google Scholar 

  • Hill MK (2010) Understanding pollution, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hill J, Peter D (1996) The use of remote sensing for land degradation and desertification monitoring in the Mediterranean Basin. European Commission, Brussels

    Google Scholar 

  • Holmgren GGS, Meyer MW, Chaney RL, Daniels RB (1993) Cadmium, lead, zinc, copper and nickel in agricultural soils of United States of America. J Environ Qual 22:335–348

    Google Scholar 

  • http//:oehha.ca.gov/risk/chhsltable.html. Accessed 16 May 2011

  • Hussein H, Farag S, Kandil K, Moawad H (2005) Tolerance and uptake of heavy metals by Pseudomonads. Process Biochem 40:955–961

    Article  CAS  Google Scholar 

  • ICIMOD (1998) Bioterracing & soil conservation. Issues in Mountain Development ICIMOD. Kathmandu, Nepal. [online] http://www.icimod.org.np/publications/imd/imd98-7.htm. Accessed 17 Jan 2012

  • Igwe JC, Nnorom IC, Gbaruko BC (2005) Kinetics of radionuclides and heavy metals behaviour in soils: implications for plant growth. Afr J Biotechnol 4(13):1541–1547

    CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, New York

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (2000) Trace elements in soil and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Karczewska A, Szersze L, Kabała C (1998) Forms of selected heavy metals and their transformation in soils polluted by the emissions from copper smelters. Adv Geo-Ecol 31:705

    CAS  Google Scholar 

  • Kayombo B, Lal R (1994) Response of tropical crops to soil compaction. In: Sloane BD, van Ouwerkkerk C (eds) Soil compaction in crop production. Elsevier, Amsterdam

    Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Knox AS, Seamans JC, Mench MJ, Vangronseveld J (2000) Remediation of metals and radionuclides. Contaminated soil using in situ stabilization techniques. Macmillan Publishers, New York

    Google Scholar 

  • Kohnke H, Bertrand AR (1959) Soil conservation. McGraw-Hill Company, New York

    Google Scholar 

  • Kurnia U, Sutono S, Anda M, Sulaeman AM, Kurniawansyah, dan SH, Talaohu (2000) Pengkajian baku mutu tanah pada lahan pertaniah. Laporan Akhir Kerjasama Penelitian Bapedal-Puslitbangtanak (in Bahasia Indonesia)

    Google Scholar 

  • Lal R (1994) Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res 27:1–8

    Article  Google Scholar 

  • Lal R, Sobecki TM, Iivari T (2004) Soil degradation in the United States: extent, severity, and trends. Lewis Publishers, Boca Raton

    Google Scholar 

  • Leita L, De-Nobil, Muhlbachova M, Mondini GC, Zerbi G (1995) Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soil 19:103–108

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Lead. In: Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Lovell DJ, Parker SR, Van Peteghem P (2002) Quantification of raindrop kinetic energy for improved prediction of splash-dispersed pathogens. Phytopathology 92:497–503

    Article  CAS  Google Scholar 

  • Luo L, Ma Y, Zhang S, Wei D, Zhu Y (2009) Inventory of trace element inputs to agricultural soils in China. J Environ Manage 90:2524–2530

    Article  CAS  Google Scholar 

  • Markus J, McBratney AB (2000) A review of the contamination of soil with lead. I. Origin, occurrence and chemical form of soil lead. Progress Environ Sci 2(4):291–318

    CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1418

    Article  CAS  Google Scholar 

  • Matzner E, Davis M (1996) Chemical soil conditions in pristine Nothofagus forests of New Zealand as compared to German forest. Plant Soil 186:285–291

    Article  CAS  Google Scholar 

  • MBRLC (1988) A manual on how to farm your hilly land without losing your soil. Mindanao Baptist Rural Life Center, Davao del Sur

    Google Scholar 

  • McDowell RW, Sharpley AN (2001) Approximating phosphorus release from soils to surface runoff and subsurface drainage. J Environ Qual 30:508–520

    Article  CAS  Google Scholar 

  • McElroy AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton

    Google Scholar 

  • Meyer O, Muller J, Meyts ER-D, Scheike T, Sharpe R, Sumpter J, Skakkebæk NE (1995) Male reproductive health and environmental chemicals with estrogenic effects. Environ Health Perspect 104(suppl 4):741–803

    Google Scholar 

  • Morgan RPC (1986) Soil erosion and conservation. Longman, Essex

    Google Scholar 

  • Mster GMA (1996) Soil introduction to environmental engineering and science. Prentice-Hall Inc., New York

    Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agric Biol J N Am 1(1):40–46

    CAS  Google Scholar 

  • Munshower FF (1977) Cadmium accumulation in plants and animals of polluted and nonpolluted grasslands. J Environ Qual 6:411–413

    Article  CAS  Google Scholar 

  • Nkansah MA, Amoako CO (2010) Heavy metal content of some common spices available in markets in the Kumasi metropolis of Ghana. Am J Sci Ind Res 1(2):158–163

    Google Scholar 

  • Northcote KH (1960) A factual key for the recognition of Australian soils. Divisional report no. 4/60. CSIRO Division of Soils, Australia

    Google Scholar 

  • NRCC (1978) Effects of arsenic in the Canadian environment. National Research Council Canada Publication no NRCC 15391

    Google Scholar 

  • Oldeman LR (1991) Global extent of soil degradation. ISRC annual report, Wageningen

    Google Scholar 

  • Oldeman LR (1994) Global extent of soil degradation. In: Greenland DJ, Szaboles I (eds) Soil resilience and sustainable land use. CAB International, Wallingford

    Google Scholar 

  • Oldeman LR (2000) GLASOD classification of soil degradation. ESCAP environment statistics course (draft)

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Center, Wageningen

    Google Scholar 

  • Page AL, Chang AC, El-Amamy M (1987) Cadmium levels in soils and crops in the United States. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. Wiley, New York

    Google Scholar 

  • Pawloska TE, Charvat I (2004) Heavy metal stress and developmental patterns of Arbuscular Mycorrhizal Fungi. Appl Environ Microbiol 70(11):6643–6649

    Article  CAS  Google Scholar 

  • Pedro J, Alvarez JA, Illman W (2006) Bioremediation and natural attenuation. Wiley, Hoboken

    Google Scholar 

  • Pimental D, Hall CW (1989) Food and natural resources. Academic, San Diego

    Google Scholar 

  • Pizzul L, Castillo MP, Stenstrom J (2007) Effect of rapeseed oil on the degradation of polycyclic aromatic hydrocarbons in soils by Rhodococcus wratislaviensis. Int Biodeter Biodegr 59:111–118

    Article  CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology. Fund Appl Microbiol 2:1012–1014

    Google Scholar 

  • Rababah A, Matsuzawa S (2002) Treatment system for solid matrix contaminated with fluoranthene. I – Modified extraction technique. Chemosphere 46(1):39–47

    Article  CAS  Google Scholar 

  • Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: Proctor J, Baker AJM, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd., Hampshire

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Mc Cool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised USLE, USDA hand book no. 703. USDA, Washington, DC

    Google Scholar 

  • Roane TM, Pepper IL (2000) Microbial responses to environmentally toxic cadmium. Microbial Ecol 38:358–364

    Article  Google Scholar 

  • Roy WR, Krapac IG, Steele JD (1993) Sorption of cadmium and lead by clays from municipal incinerator ash-water suspensions. J Environ Qual 22:537–543

    Article  CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez MC, Lu-Chau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:744–6751

    Article  CAS  Google Scholar 

  • Savchenko VK (1995) The ecology of the Chernobyl catastrophe: scientific outlines of an international programme of collaborative research. UNESCO, Paris

    Google Scholar 

  • Sheoran AS, Sheoran V, Poonia P (2008) Rehabilitation of mine degraded land by metallophytes. Min Eng J 10(3):11–16

    Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin

    Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Song Y, Liu L, Yan P, Cao T (2005) A review of soil erodibility of water and wind erosion research. J Geo Sci 15(2):167–176

    Google Scholar 

  • Stegmann R, Brunner G, Calmano W, Matz G (2001) Treatment of contaminated soil. Springer, Berlin

    Google Scholar 

  • Sudmeyer R, Bicknell D, Coles N (2007) Tree windbreaks in the wheatbelt. Department of Agriculture and Food, Government of Western Australia

    Google Scholar 

  • Tacio HD (1993) Sloping Agricultural Land Technology (SALT): a sustainable agroforestry scheme for the uplands. Agrofor Sys 22:145–152

    Article  Google Scholar 

  • Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, Inc., New York

    Google Scholar 

  • Tolgyessy J (1993) Chemistry and biology of water, air and soil: environmental aspects. Elsevier, Amsterdam

    Google Scholar 

  • Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guilette Jr. LJ, Jegou B, Jensen TK, Jouannet P, Keiding N, Leffers H, McLachlan JA (1995) Male reproductive health and environmental chemicals with estrogenic effects, Miljoprojekt nr 290. Report of the Ministry of Environment and Energy, Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Tortella GR, Rubilar O, Cea M, Avendano M, Fernandez-Alberti S, Diez MC (2009) Chlorpyrifos degradation in a biomix of biobed system with allophonic top soil. Bio MicroWorld, Lisbon, Portugal, 2–4 Dec 2009

    Google Scholar 

  • Tsuchiya K (1978) Cadmium studies in Japan-a review. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • UNCCD (United Nations Convention to Combat Desertification) (1994) The convention to combat desertification. http://unccd.int/actionprogrammes/northmed/northmed.php. Accessed 24 Sept 2011

  • UNEP (1997) Report of the UNEP/RIVM/PE workshop on global and regional modeling of food production and land use and the long-term impact of degradation of land and water resources, Bilthovan, The Netherlands

    Google Scholar 

  • Upjohn B, Fenton G, Conyers M (2005) Soil acidity and liming agfact AC.19, 3rd edn. NSW Department of Primary Industries. http://www.agric.nsw.gov.au/reader/soil-acid/2991-soil-acidity-and-liming-.pdf

  • USDA (2003) Zinc in foods-draft for comments. Foreign Agricultural Service (GAIN report) # CH3043

    Google Scholar 

  • USEPA (1996) Distribution of soil lead in the nation’s housing stock. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1997) Engineering bulletin: technology alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb, EPA/540/S-97/500. Office of Research and Development, US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • USEPA (1998) Sources of lead in soil: a literature review. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Van den Akker JJH, Schjonning P (2004) Subsoil compaction and ways to prevent it. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CAB International, Wallingford

    Google Scholar 

  • van der Perk M (2006) Soil and water contamination. Taylor & Francis, London

    Book  Google Scholar 

  • Van Es HM, Hill RL (1995) Soil compaction and soil-structure degradation. In: Crop residue management to reduce erosion and improve soil quality. Conservation research report no. 41. U.S. Department of Agriculture, Agricultural Research Service

    Google Scholar 

  • Vaughan GT (1993) Investigation report CETLHIR148: the environmental chemistry and fate of arsenical pesticides in cattle tick dip sites and banana plantations. CSIRO, Division of Coal and Energy Technology, Centre for Advanced Analytical Chemistry, Sydney

    Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vlek PLG, Hillel D, Braimoh AK (2008) Soil degradation under irrigation. In: Braimoh AK, Vlek PLG (eds) Land use and soil resources. Springer, Dordrecht

    Google Scholar 

  • Walker JM (1988) Regulation by other countries in foods and the human environment. In: Proceeding no. 2 “Cadmium Accumulation in Australian Agriculture”. National symposium, Canberra, 1–2 Mar 1988. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Walsh LM, Summer ME, Keeney DR (1977) Occurrence and distribution of arsenic in soils and plants. Environ Health Perspect 19: 67–71

    Article  CAS  Google Scholar 

  • Wang EX, Benoit G (1996) Mechanisms controlling the mobility of lead in the Spodosols of a northern hardwood forest ecosystem. Environ Sci Technol 30:2211–2219

    Article  CAS  Google Scholar 

  • Wang LK, Hung YT, Shammas NK (2010) Handbook of advanced industrial and hazardous wastes treatment. CRC Press, Boca Raton

    Google Scholar 

  • Ward W, Singh A, van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260

    Article  CAS  Google Scholar 

  • Watmough SA, Dillon P (2003) Calcium losses from a forested catchment in south-central Ontario, Canada. Environ Sci Technol 37:3085–3089

    Article  CAS  Google Scholar 

  • Wischmeier H, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains, Agriculture handbook 282. USDA, Washington, DC

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning, USDA agriculture handbook 537. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • WRI (World Resources Institute) (1997) World resources 1996–1997. World Resources Institute, Washington, DC

    Google Scholar 

  • WRI (World Resources Institute) (2001) Disappearing land: soil degradation. Sustainable Development Service: Global Trends, Washington, DC

    Google Scholar 

  • Wuest SB, Williams JD, Gollany HT (2006) Tillage and perennial grass effects on ponded infiltration for seven semi-arid loess soils. J Soil Water Conserv 61:218–223

    Google Scholar 

  • Yan-Chu (1994) Arsenic distribution in soils. In: Arsenic in the environment Part I: Cycling and characterization. Wiley, New York

    Google Scholar 

  • Yin Y, Allen HE, Li Y, Huang CP, Sanders PF (1996) Adsorption of mercury (II) by soil: effects of pH, chloride, and organic matter. J Environ Qual 25:837–844

    Article  CAS  Google Scholar 

  • Yu MH (2005) Environmental toxicology biological and health effects of pollutants. CRC Press, Boca Raton

    Google Scholar 

  • Zachar D (1982) Soil erosion. Elsevier, Oxford

    Google Scholar 

  • Zhou JFQ, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Towhid Osman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osman, K.T. (2013). Soil Resources and Soil Degradation. In: Soils. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5663-2_12

Download citation

Publish with us

Policies and ethics