Skip to main content

Biotechnology of Miscanthus

  • Chapter
  • First Online:
Biotechnology of Neglected and Underutilized Crops

Abstract

Miscanthus x giganteus is a natural hybrid C4 grass genotype of great size and of a proven utility for biomass cropping, but its growing range is restricted by cold susceptibility. New requirements for fermentability and many other characteristics have also arisen over the last 10 years. However, the Miscanthus x giganteus genotype is not very easily included in breeding programmes because it is a sterile triploid hybrid and cannot produce seed. The genetic resources of the parental species M. sinensis and M. sacchariflorus and related species are being collected, studied and analysed using many new genomic and transcriptomic molecular tools. Breeders have selected new cultivars from within the genetic pool of Miscanthus sinensis and have also created new Miscanthus x giganteus and other interspecific hybrids. There is also progress in creating new intergeneric hybrids with close relatives such as sugarcane and sorghum. Initially the main purpose of biotechnology research was to develop cheaper micro-propagation methods for Miscanthus x giganteus, because rhizome propagation was so expensive. More recently, methods of in vitro polyploidy have been developed in the hybrid and two parental species, which will allow the creation of new hybrid combinations and the exploitation of the greater size of polyploids. Genetic transformation by particle bombardment and via Agrobacterium has also been achieved relatively recently and is now being applied to several characteristics potentially involved with fermentation for ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AFLP:

Amplified fragment length polymorphism

AOA:

Alpha-aminoxyacetic acid

BAC:

Bacterial artificial chromosome

BAP:

6-benzylaminopurine

Bar:

Basta resistance gene

CH:

Casein hydrolysate

2,4-D:

2,4 dichlorophenoxy acetic acid

DH:

Doubled haploid

DHPS:

Sulfonamide herbicide resistance gene

DMSO:

Dimethylsulphoxide

EST:

Expressed sequence tag

FAEA:

Ferulic acid esterase gene

FAE:

Ferulic acid esterase

G418:

Geneticin

GBS:

Genotyping-by-sequencing

GA3:

Giberellic acid

GFP:

Green fluorescent protein

Gfp:

Green fluorescent protein gene

GUS:

β-glucuronidase

Gus:

β-glucuronidase gene

HB:

Holley and Baker medium

Hpt:

Hygromycin resistance gene

IAA:

Indole acetic acid

IBA:

Indole-3-butyric acid

2Ip:

2-isopentenyladenine

KIN:

Kinetin

MAS:

Marker assisted selection

MES:

2-(N-morpholino) ethanesulfonic acid

MET:

Methionine

MS:

Murashige and Skoog medium

NAA:

Napthelene acetic acid

nptII:

Neomycin phosphotransferase gene

PBZ:

Paclobutrazol

PHB:

Poly-β-hydroxybutyric acid

pinII:

Potato proteinase II gene

PPT:

Phosphinothricin

PVP:

Polyvinylpyrrolidone

QTL:

Quantitative trait loci

xyn2:

Xylanase gene

RAD:

Restriction site associated DNA

RAPD:

Random amplification of polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SNP:

Single nucleotide polymorphism

SSR:

Microsatellite simple sequence repeat

TDZ:

Thidiazuron

2,4,5-T:

2,4,5 trichlorophenoxyacetic acid

UidA:

β-glucuronidase gene

References

  • AEBIOM (2011) Annual Statistical Report p 36 European Biomass Association

    Google Scholar 

  • Allen D (2008) Genetic improvement of Miscanthus at mendel biotechnology. The 5th annual bioenergy feedstocks symposium. Urbana-Champaign, IL, 10 Jan 2008

    Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952

    Article  CAS  PubMed  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003a) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf, height and stem diameter. Theor Appl Genet 107:123–129

    Article  CAS  PubMed  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003b) Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132:353–361

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003c) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. chlorine and potassium content. Theor Appl Genet 107:857–863

    Article  CAS  PubMed  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003d) Influencing combustion quality of Miscanthus sinensis Anderss: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed 122:141–145

    Article  CAS  Google Scholar 

  • Atienza SG, Ramirez MC, Martin A (2003e) Mapping QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Res Comm 31:3–4

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376. doi:10.1371/journal.pone.0003376

    Article  PubMed  Google Scholar 

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Eschiricia coli and Nicotiana tabacum. Gene 100:247–250

    Article  CAS  PubMed  Google Scholar 

  • de O Buanafina MM, Langdon T, Hauck B, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar targeted expression of a fungal ferulic acid esterase. Appl Bioch Biotech 129(132):416–426

    Google Scholar 

  • de O Buanafina MM, Langdon T, Hauck B, Dalton SJ, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6:264–280

    Article  CAS  PubMed  Google Scholar 

  • Cesare M, Hodkinson T, Barth S (2010) Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae) Mol Breeding 26: 539–544

    Google Scholar 

  • Chen P-Y, Wang C-K, Soong S-C, To K-Y (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants Mol Breeding 11: 287–293

    Google Scholar 

  • Christensen AH, Quail P (1991) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen Res 5:213–218

    Article  Google Scholar 

  • Christian DG, Haase E (2001) Agronomy of Miscanthus in Miscanthus for energy and fibre. James and James (ed) Mary Walsh pp 46–68

    Google Scholar 

  • Cho M-J, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    Article  CAS  Google Scholar 

  • Chu C-C, Wang C-C, Sun C-S, Hsu C, Yin K-C, Chu C-Y (1975) Establishment of an efficient medium for anther culture in rice through comparative experiments on the nitrogen sources. Sci Sinica 18:659–668

    Google Scholar 

  • Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop Miscanthus. Glob Change Biol 13:2296–2307

    Article  Google Scholar 

  • Clifton-Brown J, Robson P, Davey C, Farrar K, Hayes C, Huang L, Jensen E, Jones L, Hinton-Jones M, Maddison A, Meyer H, Norris J, Purdy S, Rodgers C, Schwarz K, Salvatore C, Slavov G, Valentine J, Webster R, Youell S, Donnison I (2013) Breeding Miscanthus for bioenergy. In: Saha M (ed) Biomass crops: breeding and genetics, Wiley

    Google Scholar 

  • Cope-Selby N, Donnison IS, Farrar K (2011) Bacterial endophytes in the bioenergy grass Miscanthus. Soc Exp Biol Annual Meeting, Glasgow

    Google Scholar 

  • Dale PJ (1980) A method for in vitro storage of Lolium multiflorum Lam. Ann Bot 45:497–502

    Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep 18:721–726

    Article  CAS  Google Scholar 

  • Dalton SJ, Bettany AJE, Bhat V, Gupta MG, Bailey E, Timms E, Morris P (2003) Genetic transformation of Dichanthium annulatum (Forssk)—an apomictic tropical forage grass. Plant Cell Rep 21:974–980

    Article  CAS  PubMed  Google Scholar 

  • Dalton SJ, Heywood E, Timms EJ, Morris P (2007) A comparison of maize and rice ubiquitin promoter activity using the uidA (gus) gene in maize: an enhanced rice ubiquitin promoter increases transgene expression in maize compared with the native maize ubiquitin promoter. Plant transformation technologies conference, Vienna, 4–7 Feb 2007

    Google Scholar 

  • Dalton SJ, Donnison I (2010a) Improved in vitro propagation and establishment in soil of Miscanthus species. 18th European biomass conference, Lyon, 4–7 May 2010

    Google Scholar 

  • Dalton SJ, Timms-Taravella E, Donnison I (2010b) Improved genetic transformation of Miscanthus sinensis. 18th European Biomass Conference, Lyon, 4–7 May 2010

    Google Scholar 

  • Dalton SJ, Winters A, Langdon T, Timms-Taravella E, Donnison I (2011a) Genetic transformation of Miscanthus sinensis with FAE. Plant transformation technologies II conference, Vienna, 19–22 Feb 2011

    Google Scholar 

  • Dalton SJ, Gallagher JA, Winters AL, Langdon T, Timms-Taravella E, Donnison IS (2011b) Genetic transformation of Miscanthus sinensis with a ferulic acid esterase gene. 33rd symposium on biotechnology for fuels and chemicals, Seattle, 2–5 May 2011

    Google Scholar 

  • Deuter M (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe, EMI Project, Final report, pp 28–52

    Google Scholar 

  • Deuter M (2011a) Miscanthus plant named `MBS 7001’ Mendel biotechnology, Inc. World intellectual property organization, United States Patent PP22033 (‘Nagara’)

    Google Scholar 

  • Deuter M (2011b) Miscanthus plant named ‘MBS 7002’ Mendel biotechnology, Inc. World intellectual property organization, USA Patent PP22047 (‘Lake Erie’)

    Google Scholar 

  • Deuter M (2011c) Miscanthus plant named ‘MBS 1002’ Mendel biotechnology, Inc. World intellectual property organization, USA Patent PP22127

    Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2005) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    Google Scholar 

  • Engler D, Chen J (2011) Transformation and engineered trait modification in Miscanthus species. Mendel Biotechnology, Inc. World intellectual property organization, USA Patent US20110047651

    Google Scholar 

  • Farrar K, Jensen E, Allison G (2011) Defining ideotypes in the biomass crop Miscanthus. Problems and reports from the fourth MPSSG, centre for plant integrative biology, Nottingham, 25 July 2011

    Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Fowler PA, McLauchlin AR, Hall LM (2003) The potential industrial uses of forage grasses including Miscanthus. BioComposites Centre, University of Wales, Bangor

    Google Scholar 

  • Frame BR, Paque T, Wang K (2006) Maize (Zea mays L.) In: Wang K (ed) Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp185–199

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2009) Polyploidization of Miscanthus sinensis and Miscanthus x giganteus by plant colchicine treatment. Ind Crop Prod 30:444–446

    Article  Google Scholar 

  • Głowacka K, Jeżowski S (2009) Genetic and nongenetic factors influencing callus induction in Miscanthus sinensis (Anderss.) anther cultures. J Appl Genet 50:341–345

    Article  PubMed  Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2010a) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tiss Org Cult 10:79–86

    Article  Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2010b) In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind Crop Prod 32:88–96

    Article  Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2010c) Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species. In vitro Cell Dev Biol Plant 46: 161–171

    Google Scholar 

  • Głowacka K (2011) A review of the genetic study of the energy crop Miscanthus. Biomass Bioenerg 35:2445–2454

    Article  Google Scholar 

  • Grare MAR (2010) Variability of salinity response in Miscanthus sinensis, MSC thesis, edepot.wur.nl/155120

    Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus x giganteus GREEF and DEU. Angewandte Botanik 67:87–90

    Google Scholar 

  • Greef JM, Deuter M, JungC Schondelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Ev 44:185–195

    Article  Google Scholar 

  • Gubisova M, Gubis J, Zofajova A, Mihalik D, Kraic J (2013) Enhanced in vitro propagation of Miscanthus x giganteus. J Ind Crop Prod 41:279–282

    Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2(12): e1367, doi:10.1371journal.pone.0001 0001367

    Google Scholar 

  • Hansen J, Kristiansen K (1997) Short-term in vitro storage of Miscanthus × ogiformis Honda ‘Giganteus’ as affected by medium composition, temperature, and photon flux density. Plant Cell Tiss Org Cult 49:161–169

    Article  Google Scholar 

  • He R, Pan J, Zhu L, He G (2010) Agrobacterium-mediated transformation of large DNA fragments using a BIBAC vector system in rice. Plant Mol Biol Rep 28:613–619

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac F, David MB, Voight TB, Boersma NN, Long SP (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:75–135

    Article  Google Scholar 

  • Hernández P, Dorado G, Laurie DA, Martín A, Snape JW (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102:616–622

    Article  Google Scholar 

  • Ho C-W, Wu T-H, Hsu T-W, Huang J-C, Huang C-C, Chiang T-Y (2011) Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae). Am J Bot 98:201–203

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2002b) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda ‘Giganteus’. Plant Cell Tiss Org Cult 45:43–52

    Article  Google Scholar 

  • Holme IB, Krogstrup P, Hansen J (1997) Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda ‘Giganteus’ as affected by proline. Plant Cell Tiss Org Cult 50:203–210

    Article  CAS  Google Scholar 

  • Holme IB (1998) Growth characteristics and nutrient depletion of Miscanthus x ogiformis Honda ‘Giganteus’ suspension cultures. Plant Cell Tiss Org Cult 53:143–151

    Article  Google Scholar 

  • Hung K-H, Chiang T-Y, Chiu C-T, Hsu T-W, Ho C-W (2009) Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae). Conserv Genet 10:1377–1380

    Article  CAS  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In vitro Cell Dev Biol Plant 45: 291–305

    Google Scholar 

  • Jennings P (2011) Commercial scale Giant Miscanthus. Southeast bioenergy conference, Tifton, Georgia, 9 Aug 2011

    Google Scholar 

  • Jensen E, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I (2008) Unravelling the genetic control of flowering time in the bioenergy grass Miscanthus. Soc Exp Biol, Marseille, 6–10 July 2008

    Google Scholar 

  • Jørgensen U (2008) Breeding and biotechnology perspectives in Miscanthus. EC-US task force on biotechnology research: workshop on biotechnology for sustainable bioenergy. San Francisco, 21–22 Feb 2008

    Google Scholar 

  • Juvik J, Kim H-S, Ibrahim K (2007) Miscanthus breeding and improvement. Symposium on biomass feedstocks for energy production in Illinois. Urbana, 1 Nov 2007

    Google Scholar 

  • Kim H-S, Zhang G, Juvik JA, Widholm JA (2010) Miscanthus x giganteus plant regeneration: effect of callus types, ages and culture methods on regeneration competence. Glob Change Biol Bioenerg 2:192–200

    Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Micr 51:157–168

    CAS  Google Scholar 

  • Lee G-J, Jeon YJ, Ma K-Y, Kim I-K, Kim D-S (2011) A whole-genome transcriptome profiling of Miscanthus species in Korea plant and animal genomes XIX conference. San Diego, 15–19 Jan 2011

    Google Scholar 

  • Lewandowski I, Kahnt G (1993) Development of a tissue culture system with unemerged inflorescences of Miscanthus ‘Giganteus’ for the induction and regeneration of somatic embryoids. Beitr Biol Pflanzen 67:439–451

    Google Scholar 

  • Lewandowski I (1997) Micropropagation of Miscanthus x giganteus. Biotech Agr Forest 39:241–255

    Google Scholar 

  • Lewandowski I (1998) Propagation method is an important factor in the growth and development of Miscanthus x giganteus. Ind Crop Prod 8:229–245

    Article  Google Scholar 

  • Li L, Qu R, Kochko A, Fauquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12:250–255

    Article  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:1–12

    Article  Google Scholar 

  • Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T (2012) Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7(3):e33821. doi:10.1371/journal.pone.0033821

    Article  CAS  PubMed  Google Scholar 

  • Matumura M, Hasegawa T, Saijoh Y (1985) Ecological aspects of Miscanthus sinensis var. condensatus, M. x sacchariflorus, and their 3x-, 4x-hybrids. 1. Process of vegetative spread. Research Bulletin of the Faculty of Agriculture, Gifu University vol 50 pp 423–433

    Google Scholar 

  • Mendel Biotechnology Inc. (2012) Mendel Biotechnology Inc, and BP biofuels to conduct demonstration field trial of PowerCane™ Miscanthus. http://www.mendelbio.com/newsevents/index.php#ai

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing Clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microb 70:6580–6586

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nielsen JM, Brandt K, Hansen J (1993) Long-term effects of thidiazuron are intermediate between benzyladenine, kinetin or isopentenyladenine in Miscanthus sinensis. Plant Cell Tiss Org Cult 35:173–179

    Article  CAS  Google Scholar 

  • Nielsen JM, Hansen J, Brandt K (1995) Synergism of thidiazuron and benzyladenine in axillary shoot formation depends on sequence of application in Miscanthus x ogiformis ‘Giganteus’. Plant Cell Tiss Org Cult 41:165–170

    Article  CAS  Google Scholar 

  • Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159

    Article  PubMed  Google Scholar 

  • Ow DW (2011) Recombinase-mediated gene stacking as a transformation operating system. J Integrative Plant Biol 53:512–519

    Article  CAS  Google Scholar 

  • Park JW, Yu Q, Gracia NS, Acuna GM, da Silva JA (2011) Development of new intergeneric cane hybrids, Miscanes, as a source of biomass feedstock for biofuel production. Plant and animal genomes XIX conference, San Diego, 15–19 Jan 2011

    Google Scholar 

  • Pepó P, Tóth S (2005) The role of nitrogen and phosphorus source in Miscanthus in vitro cultures. Cereal Res Comm 33:549–552

    Article  Google Scholar 

  • Petersen KK (1997) Callus induction and plant regeneration in Miscanthus x ogiformis Honda ‘Giganteus’ as influenced by benzyladenine. Plant Cell Tiss Org Cult 49: 137–140

    Google Scholar 

  • Petersen KK, Hansen J, Krogstrup P (1999) Significance of different carbon sources and sterilization methods on callus induction and plant regeneration of Miscanthus x ogiformis Honda ‘Giganteus’. Plant Cell Tiss Org Cult 58:189–197

    Article  Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2002) In vitro chromosome doubling of Miscanthus sinensis. Plant Breed 121:445–450

    Article  Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2003) Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tiss Org Cult 73:137–146

    Article  Google Scholar 

  • Płażek A, Dubert F, Zur I, Waligorski P (2007) In vitro culture of Miscanthus x giganteus. Zeszyty Problemowe Postepow Nauk Rolniczych 523:175–184

    Google Scholar 

  • Płażek A, Dubert F (2010) Improvement of medium for Miscanthus x giganteus callus induction and plant regeneration. Acta Biologica Cracoviensia Series Botanica 52(1):105–110

    Google Scholar 

  • Płażek A, Dubert F, Janowiak F, Krępski T, Tatrzańska M (2011) Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. Eur J Agron 34:163–171

    Article  Google Scholar 

  • Poirier Y, van Beilen J, Orts B (2007) Biopolymers: crops for biopolymer and platform chemicals. Epobio Workshop, Athens, May 2007

    Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1979) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199:183–188

    Article  Google Scholar 

  • Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188

    Article  CAS  Google Scholar 

  • Rooney WL, Hodnett GL, Kuhlman LC, Stelly DM, Price HJ, Price PK (2010) Intergeneric hybrid plants and methods for production thereof. The Texas A&M University. World intellectual property organization, USA. US20100050501

    Google Scholar 

  • Rothrock RE (2010) Propagation of switchgrass and Miscanthus. Ceres Inc. World intellectual property organization, USA. Patent WO2010011717A2

    Google Scholar 

  • Sanchez-Serrano JJ, Keil M, O’Connor A, Schell J, Willmitzer L (1987) Wound-induced expression of a potato proteinase inhibitor II gene in transgenic tobacco plants. EMBO J 6:303–306

    CAS  PubMed  Google Scholar 

  • Shin S-B, Abdel-Ghany SE, Reddy ASN (2011) High efficiency regeneration of Miscanthus x giganteus plants. ASPB Plant Biology, Minneapolis, 6–10 Aug 2011

    Google Scholar 

  • Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239

    Article  CAS  PubMed  Google Scholar 

  • Spangenberg G, Wang ZY, Wu XL, Nagel J, Potrykus I (1995) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci 108:209–217

    Article  CAS  Google Scholar 

  • Stewart R, Toma Y, Fernández FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of “Miscanthus sinensis”, a species important to bioenergy crop development, in its native range in Japan: a review. Glob Change Biol Bioenerg 1–2:126–153

    Article  Google Scholar 

  • Sun GZ, Ma MQ, Zhang YQ, Xian XL, Cai XL, Li XP (1999) A medium adapted to embryogenic callus induction and subcultures of wheat. J Hebei Agric Sci 3:24–26

    Google Scholar 

  • Swaminathan S, Alabady MS, Varala K, de Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12

    Article  PubMed  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen A, Quail PH, Uchimiya H (1992) Expression of maize ubiquitin gene promoter-bar chimeric gene in transgenic rice. Plant Physiol 100:1503–1507

    Article  CAS  PubMed  Google Scholar 

  • Touchell DH, Ranney TG (2012) Chromosome Doubling and Fertility Restoration in Miscanthus × giganteus. ASHS Annual Conference, Miami, Florida

    Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Trieu ATN, (2010) Miscanthus transformation methods. Ceres Inc. World intellectual property organization, USA. Patent WO2010065534A3

    Google Scholar 

  • USDA (2011) Proposed biomass crop assistance program (BCAP) giant Miscanthus (Miscanthus x giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. Environmental assessment, USDA farm service agency. http://fsa.usda.gov/Internet/FSA_File/finaleagiantmcanthus.pdf

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Visser P, Pignatelli V (2001) Utilization of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London, pp 109–154

    Google Scholar 

  • Wang P, Chen Y (1983) Preliminary study on production of height of pollen H2 generation in winter wheat grown in the field. Acta Agron Sin 9:283–284

    Google Scholar 

  • Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332

    Article  CAS  Google Scholar 

  • Widholm JM (2010) Improvement of bioenergy crops via transformation. Energy biosciences institute annual report

    Google Scholar 

  • Yamada T, Wang X, Kanazawa A, Yamada T, Hoshino Y, Ukaji N (2010) Genetic improvement through a transgenic approach in Miscanthus ssp., a new bioenergy crop. Green revolution 2.0: Food + Energy and Environmental Security, Long Beach, 31 Oct–4 Nov 2010

    Google Scholar 

  • Yook M-J, Li S-H, Kim D-S (2011) SSRs analysis for genetic diversity in Miscanthus species. Plant and animal genomes XIX conference, San Diego, 15–19 Jan 2011

    Google Scholar 

  • Yu C-Y, Kim H-S, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. GCB Bioenergy 1:404–412

    Article  Google Scholar 

  • Zhao H, Yu J, You FM, Luo M, Peng JH (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53:232–245

    Article  CAS  PubMed  Google Scholar 

  • Zili Y, Puhua Z, Chengcai C, Xiang L, Wenzhong T, Li W, Shouyun C, Zuoshun T (2004) Establishment of genetic transformation system for Miscanthus sacchariflorus and obtaining of its transgenic plants. High Tech Lett 10:27–31

    Google Scholar 

  • Zili Y, Liang X, Jianxiong J, Zhiyong C, Jingping T, Lifang H (2010) Hunan agricultural university rapid breeding method of Miscanthus sinensis. Chinese Patent Application No. CN 201010259544 (24 Nov 2010)

    Google Scholar 

  • Zhang QX, SunY, Hu HK, Chen B, Hong CT, Guo HP, PanYH, Zheng BS (2012). Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis. In Vitro Cell Dev Biol Plant 48:50–57

    Google Scholar 

  • Zhou H-F, Li S–S, Ge S (2011) Development of microsatellite markers for Miscanthus sinensis (Poaceae) and cross-amplification in other related species. Am J Bot 98:195–197

    Article  Google Scholar 

  • Zub H, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30:201–214

    Article  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to Phil Morris for critically reading the manuscript, helping with the figures and for such useful advice, discussion and editing. Thanks also to Ray Bilang for pROB5, Peggy Lemaux for pAct1HPT-4, Peter Quail for pAHC27, Rongda Qu and Elumalai Sivamani for pRESQ48, and Seiichi Toki for pUBA. In addition many thanks to colleagues at IBERS including Tim Langdon for pINH1D, pIOM6 and useful discussion, John Clifton-Brown for photographs and useful discussion, Emma Timms-Taravella for expert molecular analysis, Cathy Morris and Charlotte Hayes for expert cytometry, Ana Winters for collaboration over FAE expression, Samantha Gill and Sue Youell for assistance and to Ian Thomas, Elaine Jensen, Maurice Bosch, Joe Gallagher, Paul Robson, Kerrie Farrar and Iain Donnison for useful discussion and for which I also thank Kai Schwarz and Heike Meyer of the Julius Kühn-Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Dalton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dalton, S.J. (2013). Biotechnology of Miscanthus . In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_11

Download citation

Publish with us

Policies and ethics