Skip to main content

Development and Clinical Implementation of Reverse Phase Protein Microarrays for Protein Network Activation Mapping: Personalized Cancer Therapy

  • Chapter
  • First Online:
Systems Biology in Cancer Research and Drug Discovery

Abstract

Recently, whole genome mutational scanning analysis of a number of solid tumors has revealed that cancer is a protein pathway disease at the functional level. However, since genomic and transcript profiling likely cannot alone sufficiently predict protein pathway activation in each patient’s tumor, and it is these signaling pathways that represent the targets for new molecular guided therapeutics. Thus, it is critical that we begin to define human cancer at a functional pathway activation level. Post-translational modifications such as phosphorylation drive and underpin nearly all cell signaling processes that are aberrantly activated in cancer and are epigenetic events, and not necessarily directly predictable using genomic approaches. In fact, cancer, as a model for human disease, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are underpinned by genetic changes. These pathways contain a large and growing collection of drug targets governing cellular survival, proliferation, invasion and cell death. We have developed a new type of technology, termed reverse phase protein microarray, to generate a functional map of known cell signaling networks or pathways for an individual patient using tissue obtained directly from a biopsy specimen. This patient-specific “circuit diagram” provides key information for individualized therapy. The identification of activated protein drug target networks can be used as patient selection and stratification: the realization of pathway biomarkers as perhaps the ultimate companion diagnostic assay for systems medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDx:

Companion diagnostic tests

PTM:

Posttranslational protein modifications

TCGA:

The cancer genome atlas

RPMA:

Reverse phase protein microarray

LCM:

Laser capture microdissection

IHC:

Immunohistochemistry

ELISA:

Enzyme linked immunosorbent assay

GIST:

Gastrointestinal stromal tumor

NSCLC:

Non small cell lung cancer

EMT:

Epithelial mesenchymal transition

4EBP-1:

Eukaryotic translation initiation factor 4E-binding protein 1

mTOR:

The mammalian target of rapamycin

References

  • Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–537

    Article  CAS  PubMed  Google Scholar 

  • Araujo RP, Liotta LA (2006) A control theoretic paradigm for cell signaling networks: a simple complexity for a sensitive robustness. Curr Opin Chem Biol 10(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Araujo RP, Petricoin EF, Liotta LA (2005) A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov 6(11):871–880

    Article  CAS  PubMed  Google Scholar 

  • Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7(Suppl 4):31–39

    Article  CAS  PubMed  Google Scholar 

  • Avninder S, Ylaya K, Hewitt SM (2008) Tissue microarray: a simple technology that has revolutionized research in pathology. J Postgrad Med 54(2):158–162

    Article  CAS  PubMed  Google Scholar 

  • Boyd ZS, Wu QJ, O’Brien C et al (2008) Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol Cancer Ther 7:3695–3706

    Article  CAS  PubMed  Google Scholar 

  • Calvert VS, Tang Y, Boveia V, Wulfkuhle J, Schutz-Geschwender A, Olive DM et al (2004) Development of multiplexed protein profiling and detection using near infrared detection of reverse-phase protein microarrays. Clin Proteomics 1(1):81–90

    Article  CAS  Google Scholar 

  • Casalini P, Iorio MV, Galmozzi E, Ménard S (2004) Role of HER receptors family in development and differentiation. J Cell Physiol 200(3):343–350

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S et al (2007) A map of human cancer signaling. Mol Syst Biol 3:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR et al (1996) Laser capture microdissection. Science 274(5289):998–1001

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Faivre S, Djelloul S, Raymond E (2006) New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 33(4):407–420

    Article  CAS  PubMed  Google Scholar 

  • Figlin RA (2008) Mechanisms of disease: survival benefit of temsirolimus validates a role for mTOR in the management of advanced RCC. Nat Clin Pract Oncol 5(10):601–609

    Article  CAS  PubMed  Google Scholar 

  • Geho DH, Petricoin EF, Liotta LA, Araujo RP (2005) Modeling of protein signaling networks in clinical proteomics. Cold Spring Harb Symp Quant Biol 70:517–524

    Article  CAS  PubMed  Google Scholar 

  • Grünwald V, Soltau J, Ivanyi P, Rentschler J, Reuter C, Drevs J (2009) Molecular targeted therapies for solid tumors: management of side effects. Onkologie 32(3):129–138

    PubMed  Google Scholar 

  • Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC et al (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci U S A 105(37):14112–14117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulmann C, Sheehan KM, Conroy RM, Wulfkuhle JD, Espina V, Mullarkey MJ et al (2009) Quantitative cell signallng analysis reveals down-regulation of MAPK pathway activation in colorectal cancer. J Pathol 218(4):514–519

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4(4):377–383

    Article  CAS  PubMed  Google Scholar 

  • Haura EB, Zheng Z, Song L, Cantor A, Bepler G (2005) Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 11(23):8288–8294

    Article  CAS  PubMed  Google Scholar 

  • Havelshenko DM, Smith SC, Cho HJ et al (2009) Comparison of global versus epidermal growth factor receptor pathway profiling for prediction of lapatinib sensitivity in bladder cancer. Neoplasia 11:1185–1193

    Article  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    Article  CAS  PubMed  Google Scholar 

  • Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 104(31):12867–12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Brdlik C, Jin P, Shepard HM (2009) A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther 9(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  • Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT (2010) Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 70(17):6704–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihle NT, Lemos R, Wipf P et al (2009) Mutations I the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance. Cancer Res 69:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Irish JM, Anensen N, Hovland R, Skavland J, Børresen-Dale AL, Bruserud O et al (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109(6):2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Esteva FJ (2008) Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia 13(4):485–498

    Article  PubMed  Google Scholar 

  • Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liotta LA, Kohn EC, Petricoin EF (2001) Clinical proteomics: personalized molecular medicine. JAMA 286(18):2211–2214

    Article  CAS  PubMed  Google Scholar 

  • Moran MF, Tong J, Taylor P, Ewing RM (2006) Emerging applications for phospho-proteomics in cancer molecular therapeutics. Biochim Biophys Acta 1766(2):230–241

    CAS  PubMed  Google Scholar 

  • Napoletani D, Sauer T, Struppa DC, Petricoin E, Liotta L (2008) Augmented sparse reconstruction of protein signaling networks. J Theor Biol 255(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Reilly KE, Warycha M, Davies MA et al (2009) Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res 15:2872–2878

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paweletz CP, Charboneau L, Roth MJ, Bichsel VE, Simone NL, Chen T et al (2001) Reverse phase proteomic microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16):1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Pernas FG, Allen CT, Winters ME et al (2009) Proteomic signatures of epidermal growth factor receptor and survival signal pathways correspond to gefitinib sensitivity in head and neck cancer. Clin Cancer Res 15:2361–2372

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF 3rd, Bichsel VE, Calvert VS, Espina V, Winters M, Young L et al (2005a) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23:3614–3621

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF III, Bichsel VE, Calvert VS et al (2005b) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23:3614–3621

    Article  CAS  PubMed  Google Scholar 

  • Petricoin EF, Espina V, Araujo RP, Midura B, Yeung C, Wan X et al (2007) Phosphoprotein signal pathway mapping: Akt/mTOR pathway activation association with childhood rhabdomyosarcoma survival. Cancer Res 67(7):3431–3434

    Article  CAS  PubMed  Google Scholar 

  • Pierobon M, Calvert V, Belluco C, Garaci E, Deng J, Lise M et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8(2):110–117

    Article  CAS  Google Scholar 

  • Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40(12):2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Rapkiewicz A, Espina V, Zujewski JA, Lebowitz PF, Filie A, Wulfkuhle J et al (2007) The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111(3):173–184

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Richstone L, Corton M, Behrendt N, Wulkfuhle J et al (2007) Genomic and proteomic profiles reveal the association of gelsolin to TP53 status and bladder cancer progression. Am J Pathol 171(5):1650–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyers CL (2008) The cancer biomarker problem. Nature 452(7187):548–552

    Article  CAS  PubMed  Google Scholar 

  • Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V et al (2005a) Use of reverse-phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  CAS  PubMed  Google Scholar 

  • Sheehan KM, Calvert VS, Kay EW et al (2005b) Use of reverse-phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  CAS  PubMed  Google Scholar 

  • Sheehan KM, Gulmann C, Eichler GS, Weinstein J, Barrett HL, Kay EW et al (2007) Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveal epithelial-mesenchymal transition. Oncogene 27(3):323–331

    Article  PubMed  Google Scholar 

  • Silvestri A, Colombatti A, Calvert VS, Deng J, Mammano E, Belluco C et al (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90(5):787–796

    Article  CAS  PubMed  Google Scholar 

  • Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324(5924):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern DF (2005) Phosphoproteomics for oncology discovery and treatment. Expert Opin Ther Targets 9(4):851–860

    Article  CAS  PubMed  Google Scholar 

  • Stevens EV, Nishizuka S, Antony S et al (2008) Predicting cisplatin and trabectedin drug sensitivity in ovarian and colon cancers. Mol Cancer Ther 7:10–18

    Article  CAS  PubMed  Google Scholar 

  • Swanton C, Futreal A, Eisen T (2006) Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res 12(14 Pt 2):4377s–4383s

    Article  CAS  PubMed  Google Scholar 

  • van Agthoven T, Godinho MF, Wulfkuhle JD, Petricoin EF 3rd, Dorssers LC (2012) Protein pathway activation mapping reveals molecular networks associated with anti-estrogen resistance in breast cancer cell lines. Int J Cancer. 13 Feb 2012, ePub ahead of print

    Google Scholar 

  • Vanmeter AJ, Rodriguez AS, Bowman ED, Harris CC, Deng J, Calvert VS et al (2008) LCM and protein microarray analysis of human NSCLC: differential EGFR phosphorylation events associated with mutated EGFR compared to wild type. Mol Cell Proteomics 7(10):1902–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura AC, Jackson TL, Merajver SD (2009) On the role of cell signaling models in cancer research. Cancer Res 69(2):400–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley HS (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284(1):78–88

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin EF (2006) Technology Insight: pharmacoproteomics for cancer-promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3(5):256–268

    Article  CAS  PubMed  Google Scholar 

  • Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J et al (2008) Multiplexed cell signaling analysis of human breast cancer: applications for personalized therapy. J Proteome Res 7(4):1508–1517

    Article  CAS  PubMed  Google Scholar 

  • Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10):2013–2023

    Article  CAS  PubMed  Google Scholar 

  • Zha H, Raffeld M, Charboneau L, Pittaluga S, Kwak LW, Petricoin E 3rd, Liotta LA et al (2004) Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest 84:235–244

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel F. Petricoin III PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pierobon, M., Wulfkuhle, J., Liotta, L.A., Petricoin, E.F. (2012). Development and Clinical Implementation of Reverse Phase Protein Microarrays for Protein Network Activation Mapping: Personalized Cancer Therapy. In: Azmi, A.S. (eds) Systems Biology in Cancer Research and Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4819-4_13

Download citation

Publish with us

Policies and ethics