Skip to main content

Patient-Specific Biomechanical Framework for Aiding Clinical Decisions in Eye Surgery

  • Chapter
Patient-Specific Computational Modeling

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 5))

  • 849 Accesses

Abstract

In this work we present the development of a patient-specific model of the eye for helping in different ophthalmologic surgical techniques. To build the model we use a simple general model on which we can add the patient specificities measured with proper equipment. The model of the eye is composed of several tissues that must be characterized to ensure that the model has a behavior similar to the real eye. Once the constitutive model is described and characterized for all the tissues included in the model, different surgical techniques can be accomplished. We present here the usefulness of this model to help in surgical planning of incisional surgery for the correction of astigmatism, the numerical analysis of the process of accommodation and the numerical simulation of the scleral buckling technique for retinal detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alastrue V, Calvo B, Peña E, Doblare M (2006) Biomechanical modelling of refractive corneal surgery. J Biomech Eng 128:150–160

    Article  Google Scholar 

  • Brown N (1973) Change in shape and internal form of the lens of the eye on accommodation. Exp Eye Res 15:441–459

    Article  Google Scholar 

  • Bryant MR, McDonnell PJ (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng 118:473–481

    Article  Google Scholar 

  • Burd H, Judge S, Cross J (2002) Numerical modelling of the accommodating lens. Vis Res 42:2235–2251

    Article  Google Scholar 

  • Cabrera D, Niazy A, Kurtz RM, Djotyan GP, Juhasz T (2006) A finite element model for ultrafast laser-lamellar keratoplasty. Ann Biomed Eng 34:69–83

    Google Scholar 

  • Calossi A (2007) Cornea asphericity and spherical aberration. J Refract Corneal Surg 23:505–514

    Google Scholar 

  • Chu Y, Hardten D, Lindquist T, Lindstrom R (2005) Astigmatic keratotomy. Duane’s ophthalmology. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Cristóbal JA, del Buey MA, Mateo A (2006) Astigmatismo y catarata. In: Centurión V, Nýcoli C, Villar-Kuri J (eds) El libro de cristalino de las Américas. Ed. Santos, Brazil, pp 10–13

    Google Scholar 

  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT (2003) Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. J Biomech Eng 125(1):124–134

    Article  Google Scholar 

  • Dubbelman M, Van der Heijde GV (2001) The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis Res 41:1867–1877

    Article  Google Scholar 

  • Dubbelman M, van der Heijde GV, Weeber H, Vrensen G (2003) Changes in the internal structure of the human crystalline lens with age and accommodation. Vis Res 43:2363–2375

    Article  Google Scholar 

  • Elsheikh A, Brown M, Alhasso D, Rama P, Campanelli M, Garway-Heath D (2008) Experimental assessment of corneal anisotropy. J Refract Surg 24(2):178–187

    Google Scholar 

  • Fisher RF (1971) The elastic constants of the human lens. J Physiol 212(1):147–180

    Google Scholar 

  • Fisher R, Pettet B (1972) The postnatal growth of the capsule of the human crystalline lens. J Anat 112(2):207–214

    Google Scholar 

  • Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  • Fung YC (1993) Biomechanics. Mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21:1098–1106

    Article  Google Scholar 

  • Glasser A, Campbell MCV (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vis Res 38:209–229

    Article  Google Scholar 

  • Hermans EA, Dubbelman M, van der Heijde GL, Heethaar RM (2008) Change in the accomodative force on the lens of the human eye with age. Vis Res 46:119–126

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Jones C, Atchison D, Meder R, Pope J (2005) Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vis Res 45:2352–2366

    Article  Google Scholar 

  • Kapnisis K, Doormaal MV, Ethier CR (2009) Modeling aqueous humor collection from the human eye. J Biomech 42(15):2454–2457

    Article  Google Scholar 

  • Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investig Ophthalmol Vis Sci 32(8):2244–2258

    Google Scholar 

  • Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Investig Ophthalmol Vis Sci 38:357–363

    Google Scholar 

  • Krag S, Andreassen T (1996) Biomechanical measurements of the porcine lens capsule. Exp Eye Res 62:253–260

    Article  Google Scholar 

  • Lanchares E, Calvo B, Cristóbal JA, Doblaré M (2008) Finite element simulation of arcuates for astigmatism correction. J Biomech 41(4):797–805

    Article  Google Scholar 

  • Manns F, Parel JM, Denham D, Billotte C, Ziebarth N, Borja D, Fernandez V, Aly M, Arrieta E, Ho A, Holden B (2007) Optomechanical response of human and monkey lenses in a lens stretcher. Investig Ophthalmol Vis Sci 48:3260–3268

    Article  Google Scholar 

  • Meek KM, Newton RH (1999) Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice. J Refract Surg 15(6):695–699

    Google Scholar 

  • Munnerlyn CR, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14:46–52

    Google Scholar 

  • Navarro R, Gonzalez L, Hernandez JL (2005) Representación canónica de la superficie corneal: topografía promedio. Ver Oir 24:594–606

    Google Scholar 

  • Navarro R, Palos F, Gonzalez L (2007) Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 24(8):2175–2185

    Article  Google Scholar 

  • Navarro R, Palos F, Lanchares E, Calvo B, Cristóbal JA (2009) Lower- and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism. J Cataract Refract Surg 35(1):158–165

    Article  Google Scholar 

  • Norman RE, Flanagan JG, Rausch SMK, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90(2):277–284

    Article  Google Scholar 

  • Pandolfi A, Fotia G, Manganiello F (2009) Finite element simulations of laser refractive corneal surgery. Eng Comput 25:15–24

    Article  Google Scholar 

  • Pedrigi RM, David G, Dziezyc J, Humphrey JD (2007) Regional mechanical properties and stress analysis of the human anterior lens capsule. Vis Res 47:1781–1789

    Article  Google Scholar 

  • Pinsky P, Datye V (1991) A microstructurally-based finite element model of the incised human cornea. J Biomed Eng 10:907–922

    Google Scholar 

  • Rosen A, Denham DB, Fernandez V, Borja D, Ho A, Mannis F, Parel J, Augusteyn R (2006) In vitro dimensions and curvatures of human lenses. Vis Res 46:1002–1009

    Article  Google Scholar 

  • Schachar R, Huang T, Huang X (1993) Mathematic proof of Schachar’s hypothesis of accommodation. Ann Ophthalmol Clin 33(2):103–112

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Investig Ophthalmol Vis Sci 45(12):4378–4387

    Article  Google Scholar 

  • Sigal IA, Fanagan JG, Tertinegg I, Eithier CR (2010) 3D morphometry of the human optic nerve head. Exp Eye Res 90:70–80

    Article  Google Scholar 

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  MATH  Google Scholar 

  • Simo JC, Taylor RL (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85:273–310

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Misra M, Koch DD (2003) Peripheral corneal relaxing incisions combined with cataract surgery. J Cataract Refract Surg 29:712–722

    Article  Google Scholar 

  • Weale RA (1992) The senescence of human vision. Oxford University Press, Oxford

    Google Scholar 

  • Spencer AJM (1954) Theory of invarinats. In: Continuum physics. Academic Press, New York, pp 239–253

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Instituto de Salud Carlos III (ISCIII) and the CIBER-BBN (Centro de Investigación Biomédica En Red en Bioingeniería, Biomateriales y Nanomedicina) initiative, and also the research support of the Spanish Ministry of Education and Science through the research project DPI2008-02335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Calvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lanchares, E., Malvè, M., Calvo, B. (2012). Patient-Specific Biomechanical Framework for Aiding Clinical Decisions in Eye Surgery. In: Calvo Lopez, B., Peña, E. (eds) Patient-Specific Computational Modeling. Lecture Notes in Computational Vision and Biomechanics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4552-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4552-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4551-3

  • Online ISBN: 978-94-007-4552-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics