Skip to main content

Nanotechnology: An Advanced Approach to the Development of Potent Insecticides

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests

Abstract

Nanoparticles are generally defined as structures with dimensions of less than 100 nm. They usually differ by their fundamental properties from that of the bulk material, especially in having much higher chemical activity and solubility. As a result, the biological activity, mobility and bioavailability are tremendously increased. Many of the insecticides known today are organic compounds which are poorly soluble in water. Their regular utilization leads to environmental contamination by organic solvents and frequently results in insufficient activity and insect resistivity. Nanotechnology presents an appealing way to overcome these problems. While no chemical alteration to the insecticide molecule is made, formulating the material as nanoparticles may lead to a significant increase in water solubility, thus enhanced dissolution rate and better dispersion uniformity upon application. This chapter will give a state of the art of nanomaterials as pesticides, and provide an overview of the techniques for making nanoparticles, in view of agricultural formulations.

The current legal status insecticides in nanoparticles and the research which is conducted on environmental safety of nanoparticles are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angus D, Duncalf DJ, Elphick JA et al (2007) Improvements relating to nanodispersions. European patent application, EP 2386292 A1

    Google Scholar 

  • Anjali CH, Khan SS, Margulis-Goshen K et al (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Safe 73:1932–1936

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  PubMed  CAS  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R et al (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    Article  PubMed  CAS  Google Scholar 

  • Cameron NMS, Mitchell ME (2007) Nanoscale: issues and perspectives for the nano century. In: Kimbrell GA (ed) The potential environmental hazards of nanotechnology and the applicability of the existing low, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Chen J, Wang W, Xu Y, Zhang X (2011) Slow release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59:307–311

    Article  PubMed  CAS  Google Scholar 

  • Chin CP, Wu HS, Wang SS (2011) New approach to pesticide delivery using nanosuspensions: research and applications. Ind Eng Chem Res 50:7637–7643

    Article  CAS  Google Scholar 

  • Department of Health and Human Services. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. http://www.cdc.gov/niosh/docs/2009-125. Accessed 18 Aug 2011

  • Desai N, Trieu V, Yao Z et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market (1998). http://ec.europa.eu/environment/biocides/pdf/dir_98_8_biocides.pdf. Accessed 18 Aug 2011

  • Dunculf DJ, Foster AJ, Long J et al (2008) Improvements relating to biocidal compositions. International Patent Application WO2008006714

    Google Scholar 

  • Elek N, Hoffman R, Raviv U et al (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloid Surf A 372(1–3):66–72

    Article  CAS  Google Scholar 

  • Federal Register/Vol. 76, No. 117/ Friday, June 17, 2011/ Proposed rules. http://www.gpo.gov/fdsys/pkg/FR-2011-06-17/pdf/FR-2011-06-17.pdf. Accessed 18 Aug 2011

  • Fendler JH, Meldrum FC (1995) The colloid chemical approach to nanostructured materials. Adv Mater 7(7):607–632

    Article  CAS  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86(2–3):243–252

    Article  PubMed  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404

    Article  PubMed  CAS  Google Scholar 

  • Hoet PHM, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:12–27

    Article  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40:4330–4361

    Article  CAS  Google Scholar 

  • Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T (2008) In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. J Control Release 130:29–37

    Article  PubMed  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2004) Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use. US Patent Application 20040091546

    Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119

    Article  PubMed  CAS  Google Scholar 

  • Knapp LF (1921) The solubility of small particles and the stability of colloids. Trans Faraday Soc 17:457–465

    Article  Google Scholar 

  • Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E1–E9

    Article  Google Scholar 

  • Levy-Ruso G, Toledano O (2007) Process for the preparation of nanoparticulate pesticidal compositions and compositions obtained there from. US Patent Application 20070197385

    Google Scholar 

  • Li ZZ, Xu SA, Wen LX et al (2006) Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J Control Release 111:81–88

    Article  PubMed  CAS  Google Scholar 

  • Li X, Anton N, Arpagaus C et al (2010a) Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. J Control Release 147(2):304–310

    Article  PubMed  CAS  Google Scholar 

  • Li F, Pham H, Anderson DG (2010b) Methods to produce polymer nanoparticles and formulations of active ingredients. International Patent Application WO 2010035118

    Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue WF et al (2007) Nucleation of protein fibrillation by nanoparticles. PNAS 104(21):8691–8696

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wen LX, Li ZZ et al (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812

    Article  PubMed  CAS  Google Scholar 

  • Macosko CW, Anaker JL, Hoye TR, Prud’homme RK (2007) Method for producing nanoparticles. US Patent Application 20070122440

    Google Scholar 

  • Magdassi S, Dayan B, Levy-Ruso G (2008) Pesticide nanoparticles obtained from microemulsions and nanoemulsions. International Patent Application WO2008032328

    Google Scholar 

  • Margulis-Goshen K, Kesselman E, Danino D, Magdassi S (2010) Formation of celecoxib nanoparticles from volatile microemulsions. Int J Pharm 393:230–237

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Auweter H, Koltzenburg S et al (2007) Nanoparticulate pesticide formulations. International Patent Application WO 2007093232

    Google Scholar 

  • Merisko-Liversidge EM, Liversidge GG (2008) Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 36(1):43–48

    Article  PubMed  CAS  Google Scholar 

  • Mihranyan A, Stromme M (2007) Solubility of fractal nanoparticles. Surf Sci 601(2):315–319

    Article  CAS  Google Scholar 

  • Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170

    Article  PubMed  CAS  Google Scholar 

  • Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Nair AS, Tom RT, Pradeep T (2003) Detection and extraction of endosulfan by metal nanoparticles. J Environ Monit 5(2):363–365

    Article  PubMed  Google Scholar 

  • Nair AS, Tom RT, Kumar R (2007) Chemical interactions at noble metal nanoparticle surfaces — catalysis, sensors and devices. COSMOS 3(1):103–124

    Article  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6(3–4):370–374

    Article  CAS  Google Scholar 

  • Ramos-Nino ME, Scapoli L, Martinelli M et al (2003) Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res 63(13):3539–3545

    PubMed  CAS  Google Scholar 

  • Rogers TL, Andrew CN, Sarkari M et al (2003) Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Pharm Res 20(3):485–493

    Article  PubMed  CAS  Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R et al (2010) UV irradiation-induced silver nanoparticles as mosquito larvacides. J Appl Sci 10(23):3132–3136

    Article  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging Novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies, 1st edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Seaton A, Tran L, Aitken R, Donaldson K (2009) Nanoparticles, human health hazard and regulation. J R Soc Interface. doi:10.1098/rsif.2009.0252

  • Senthilnathan J, Philip L (2010) Removal of mixed pesticides from drinking water system using surfactant-assisted nano -TiO2. Water Air Soil Pollut 210:143–154

    Article  CAS  Google Scholar 

  • Simonelli AP, Mehta SC, Higuchi WI (1970) Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci 59(5):633–638

    Article  PubMed  CAS  Google Scholar 

  • Stackelberg PE, Kauffman LJ, Ayers MA, Baehr AL (2001) Frequently co-occurring pesticides and volatile organic compounds in public supply and monitoring wells, southern New Jersey, USA. Environ Toxicol Chem 20(4):853–865

    Article  PubMed  CAS  Google Scholar 

  • Storm RM, Price DC, Lubetkin SD (2001) Aqueous dispersion of agricultural chemicals. US Patent Application 20010051175

    Google Scholar 

  • Texter J (2001) Precipitation and condensation of organic particles. J Dispers Sci Technol 22:499–527

    Article  CAS  Google Scholar 

  • Timothy AE, Taylor RAJ, Downer RA, Hall FR (1999) Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number. Pestic Sci 55:783–792

    Article  Google Scholar 

  • Whitehouse P, Rannard S (2010) The application of nanodispersions to agriculture. Outlook Pest Manag 21(4):190–192

    Article  Google Scholar 

  • Wu WJ, Nancollas GH (1998) A new understanding of the relationship between solubility and particle size. J Solut Chem 27(6):521–531

    Article  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  PubMed  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L et al (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Yuan F, Cao M, Li C et al (2009) Emamectin benzoate solid lipid nanoparticle, and its preparation method and application in insecticide formulation. Chinese Patent Application CN 101692808

    Google Scholar 

  • Zhao F, Yaqian W (2011) Formula optimization design of pesticide microemulsion. In: Stoytcheva M (ed) Pesticides – formulations, effects, fate. ISBN: 978-953-307-532-7, InTech, Available from: http://www.intechopen.com/articles/show/title/formula-optimization-design-of-pesticide-microemulsion. Accessed 18 Aug 2011

  • Zhu MT, Wang B, Wang Y et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Magdassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Margulis-Goshen, K., Magdassi, S. (2013). Nanotechnology: An Advanced Approach to the Development of Potent Insecticides. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_15

Download citation

Publish with us

Policies and ethics