Skip to main content

Potential of Rhizobia for Sustainable Production of Non-legumes

  • Chapter
  • First Online:
Crop Production for Agricultural Improvement

Abstract

Rhizobia are familiar as the symbiotic associates of legumes, forming N2-fixing nodules. However, it has been proven that these bacteria also have the ability to survive and colonize the roots of non-legumes as efficiently as they colonize the roots of their legume host. Although example of N2-fixation in non-legume parasponia has been observed, the researchers are yet unable to extend this nitrogen-fixation symbiosis to major cereals of the planet. Only nodule-like structures or hypertrophies or outgrowths have been recorded with rhizobia on the roots of non-legumes yet without significant N2-fixation. Generally, three types of rhizobial interactions with non-legumes have been demonstrated i.e. interactions which result in growth and yield promotion of the interacting non-legumes, those which result in poor or detrimental effect on the growth and yield of inoculated non-leguminous plants and those which cannot result in any increase or decrease (missing effect/no effect/neutral effect) in the plant growth. Like other PGPR, rhizobia can affect the non-legumes beneficially by solubilizing sparingly soluble organic and inorganic phosphates, by releasing phytohormnes, enzymes, siderophores, lumichromes, lipo-chito-oligosaccharides, exo-polysaccharides and riboflavins. They can also promote the growth of non-legumes by inhibiting the growth of pathogens by sequestering the iron in the rhizosphere with siderophore production, by releasing the antibiotics and/or by the production of cell wall degrading enzymes. They can also play a significant role in alleviating the deleterious effects of various environmental stresses. Even more, they can improve the growth of non-legumes by changing the host-plant susceptibility by releasing different bio-stimulatory agents. However, plant variety, cultural conditions, native micro-flora, soil and other ecological factors have been reported affecting the degree to which rhizobial association benefit the non-legumes. But it has also been recognized that the potential of PGPR strains of rhizobia (regarding colonization to a variety of plants, adoption under variable soil and environmental conditions and against the pathogens that can attack the host plants) can be improved further through dual/mix inoculation with other beneficial microorganisms. Finally, it is recognized that competent rhizobial strains could be used as biofertilizers, stress regulators, and as biocontrol agents to non-legumes to increase their production. However, much more research efforts are needed to develop rhizobial strains which can effectively improve crop productivity under a variety of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorous by Rhizobium leguminosarum bv. viciae phosphatases. Biol Fertil Soils 8:216–218

    Article  Google Scholar 

  • Abdelaziz RA, Radwansamir MA, Abdel-Kader M, Barakat MA (1996) Biocontrol of faba bean root-rot using VA mycorrhizae and its effect on biological nitrogen fixation. Egypt J Microbiol 31:273–286

    Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  PubMed  CAS  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Alami Y, Heulin T, Milas M, de Baynast R, Heyraud A, Villain A (1998) Polysaccharide microorganism and method for obtaining same composition containing it and application. European Patent No 97–1624970212

    Google Scholar 

  • Alami Y, Champolivier L, Merrien A, Heulin T (1999) Role de rhizobium sp., rhizobactérie productrice d’exopolysaccharide dans l’agrégation du sol rhizosphérique du tournesol: conséquences sur la croissance de la plante et la résistance de la plante à la contrainte hydrique. OCL – Oleagineux Corps gras Lipides 6:524–528

    CAS  Google Scholar 

  • Alami Y, Achouak WA, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflower by an exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  PubMed  CAS  Google Scholar 

  • Algawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Article  Google Scholar 

  • Algawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresource Technol 79:273–276

    Article  CAS  Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1989) Formation of nodular structures on rice seedlings by rhizobia. J Exp Bot 40:473–478

    Article  Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1990) Enzyme treatment, PEG, Bioting and nodule stimulation in white clover by Rhizobium trifolii. J Plant Physiol 15:225–258

    Google Scholar 

  • Alstrom S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238

    Article  Google Scholar 

  • Amara MAT, Dahdoh MSA (1997) Effect of inoculation with plant-growth promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egypt J Soil Sci 37:467–484

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Antoun H, Prevost D (2000) PGPR activity of Rhizobium with nonleguminous plants. http://www.ag.auburn.ed/∼mlowens/argentina/pdf%20manuscripts/prevost.pdf. Accessed on 23 Dec 2010

  • Antoun H, Bordeleau LM, Gagnon C (1978) Antagonisme entre Rhizobium melilotiet Fusarium oxysporum en relation avec lefficacite symbiotique. Can J Plant Sci 58:75–78

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non- legumes: effect on radishes (Raphanus sativus L.). Plant Soil 4:57–68

    Article  Google Scholar 

  • Anyia AO, Archambault DJ, Slaski JJ (2004) Growth promoting effects of the diazotroph Azorhizobium caulinodans on Canadian wheat cultivars. Environmental Technologies, Alberta Research Council, Vegreville, Alberta, T9C 1T4, Canada. Available on: http://www.arc.ab.ca/. Cited 25 Dec 2010

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68:594–596

    Article  PubMed  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 8:673–677

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indol-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Badenoch-Jones J, Summons RE, Djordjervic MA, Shine J, Letham DS, Rolfe BG (1982) Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root curling and nodule initiation. Appl Environ Microbiol 44:275–280

    PubMed  CAS  Google Scholar 

  • Bai YM, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japnicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Balley R, Thomas-Bauzon D, Heulin T, Balandreau J, Richard C, De Ley U (1983) Determination of the most frequent N2-fixing bacteria in the rice rhizosphere. Can J Microbiol 36:881–887

    Article  Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. Viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Barea JM, Azcon R, Hayman DS (1975) Possible synergistic interactions between endogyme and phosphate-solubilizing bacteria in low phosphate soils. In: Sanders FE, Mose B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 409–417

    Google Scholar 

  • Bashan Y, Harrison SK, Whitmoyer RE (1990) Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775

    PubMed  CAS  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 17:29–37

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Engorova TV, Metveyeva AA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase on nutrient status of the plant. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czem.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bender GL, Preston L, Barnard D, Rolfe BG (1990) Formation of nodule-like structures on the roots of the non-legumes rice and wheat. In: Gresshoff PM, Roth LE, Stacey G, Newton W (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, London, p 825

    Google Scholar 

  • Bera R, Seal A, Bhattacharyya P, Das TH, Sarkar D, Kangjoo K (2006) Targeted yield concept and a framework of fertilizer recommendation in irrigated rice domains of subtropical India. J Z Univ Sci B 7:963–968

    Article  CAS  Google Scholar 

  • Berg G (2009) Plan-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. Nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizosphere. Int J Syst Evol Microbiol 59:367–372

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA, Gresshoff PM, Rameau C, Turnbull CGN (2003) Additional signaling compounds are required to orchestrate plant development. J Plant Growth Regul 22:15–24

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  PubMed  CAS  Google Scholar 

  • Biederbeck VO, Lupwayi NZ, Hanson KG, Rice WA, Zentner RP (2000) Effect of long-term rotation with letils on rhizosphere ecology and on endophytic rhizobia in wheat. In: Proceedings of the 17th American conference on symbiotic nitrogen fixation. Universite de Laval, Quebec, p 80

    Google Scholar 

  • Biswas JC (1998) Effect of nitrogen fixing bacteria on growth promotion of lowland rice (Oryza sativa L.). PhD thesis, Department of Soil Science, University of Philippines, Los Banos

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobial inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bodelier PLE, Wijhuizen AG, Blom CWPM, Laanbroek HJ (1997) Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil 190:91–103

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  PubMed  CAS  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Breil BT, Ludden PW, Triplett EW (1993) DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J Bacteriol 175:3693–3702

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacteria that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 62:3030–3033

    PubMed  CAS  Google Scholar 

  • Burdman S, Jurkevitch E, Schwartsburd B, Hampel M, Okon Y (1998) Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol II. Science Publishers Inc., Plymouth, pp 229–250

    Google Scholar 

  • Burns TA, Bishop PE Jr, Israel DW (1981) Enhanced nodulation of leguminous plants roots by mixed culture of Azotobacter vinelandii and Rhizobium. Plant Soil 62:399–412

    Article  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211:98–104

    Article  PubMed  CAS  Google Scholar 

  • Canbolat MY, Barik KK, Cakmarci R, Sabin F (2006) Effects of mineral and biofertilizers on barley growth on compacted soil. Acta Agric Scand 56:324–332

    CAS  Google Scholar 

  • Carletti S, Caceres ER, Llorent B (1994) Growth promotion by PGPR on different plant species growing in hydroponic conditions. In: Improving plant productivity with rhizosphere bacteria. Proceedings of the 3rd International Workshop on Plant growth-promoting rhizobacteria, March 7–11, 1994, Adelaide, Australia

    Google Scholar 

  • Carson KC, Holliday S, Glenn AR, Dilworth MJ (1992) Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157:264–271

    Article  PubMed  CAS  Google Scholar 

  • Carson KC, Meyer JM, Dillworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Mascoarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du maı¨s et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chabot R, Beauchamp CE, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorguin J, Ba A, Gillis M, De laiudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty U, Purkayastha RP (1984) Role of Rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica csmpestris). Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chaney RL, Brown SL, Stuczynski RI, Daniels WL, Henry CL, Li YM, Siebielec G, Malik M, Angle JS, Ryan JA, Compton H (2000) Risk assessment and remediation of soils contaminated by mining and smelting of lead, zinc and cadmium. Rev Int Contam Ambient 16:75–192

    Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth-promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Article  Google Scholar 

  • Chebotar VKK, Asis CA, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Chen CT, Maundu J, Cavaness J, Dandurand LM, Orser CS (1992) Characterization of salt-tolerant and salt-sensitive mutants of Rhizobium leguminosarum biovar, viciae strain C12046. FEMS Microbiol Lett 90:135–140

    Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Christiansen-Weniger C (1997) Ammonium excreting Azospirillum brasilense C3: GUS A inhabiting induced root tumors along stem and roots of rice. Soil Biol Biochem 29:943–950

    Article  CAS  Google Scholar 

  • Christiansen-Weniger C, Vanderleyden J (1994) Ammonia excreting Azospirillum sp. become intracellularly established in maize (Zea mays) para-nodules. Biol Fertil Soils 17:1–8

    Article  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Cocking EC, Srivastava JS, Kothari SL, Davey HR (1992) Invasion of non-legume plants by diazotrophic bacteria. In: Khush GS, Bennett J (eds) Nodulation and nitrogen fixation in rice: potential and prospects. International Rice Research Institute, Philippines, pp 119–121

    Google Scholar 

  • Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Food-Industry. Hi-Tech. Jan 21–24

    Google Scholar 

  • Cocking EC, Kothjari SL, Batchelor CA, Jain S, Webster G, Jones J, Jotham J, Davey MR (1995) Interaction of Rhizobium with non-legume crops for symbiotic nitrogen fixation. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, NATO ASI Series, Fl G37. Springer, Berlin, pp 197–205

    Chapter  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soil contaminated with organic pollutant. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 58:39–49

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dakora FD, Matiru V, King M, Phillips DA (2002) Plant growth promotion in legumes and cereals by lumichrome, a rhizobial signal metabolite. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation: global perspectives. CABI Publishing, Wallingford, pp 321–322

    Google Scholar 

  • Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb. var. mungo. Biol Plantarum 29:350–354

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernandez FJ, Espuny MR, Rodriguez MA, Soria ME, Gil Serrano AM, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriguez-Carvajal MA, Gil-Serrano AM, Espuny MR, Lopez-Baena FJ, Bellogin RA, Cegias M, Ollero FJ (2009) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short growing seasons. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R, de Bruijn FJ, Rademaker J, Squartini A, Corich V, Mateos P, Martinez-Molina E, Velazquez E, Biswas JC, Hernandez RJ, Ladha JK, Hill J, Weinman J, Rolfe BG, Vega-Hernandez M, Bradford JJ, Hollingsworth RI, Ostrom P, Marshall E, Jain T, Orgambide G, Philip-Hollingsworth S, Triplett E, Malik KA, Maya-Flores J, Hartmann A, Umali-Garcia M, Izaguirre-Mayor ML (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium leguminosarum bv. trifolii and rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Los Banos, pp 167–189

    Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R, Zidan M, Abu-Baker, Gomaa M, Squartini A, Jing Y, Chi F, Shen SH (2005) Recent studies on the Rhizobium cereal association. In: Wang YP, Lin M, Tian ZX, Elmericj C, Newton WE (eds) Biological nitrogen fixation: sustainable agriculture and the environment. Proceedings of the 14th International Nitrogen Fixation Congress, Springer, Dordrecht, pp 379–380

    Google Scholar 

  • De Bruijn FJ, Jing Y, Dazzo FB (1995) Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants such as rice. Plant Soil 174:225–240

    Article  Google Scholar 

  • De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendrisk T, Schiavo FL, Terzi M, Bisseling T, van Kammen A, de Vries SC (1993) A plant somatic embryo mutant is rescued by rhizobial lipo-oligosaccharides. Plant Cell 5:615–620

    PubMed  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Depret G, Houot S, Allard MR, Breuil MC, Nouaim R, Laguerre G (2004) Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol Ecol 51:87–97

    Article  PubMed  CAS  Google Scholar 

  • Derylo M, Choma A, Puchalshi B, Suchanek W (1994) Siderophore activity in Rhizobium species isolated from different legumes. Acta Biochim Pol 41:7–11

    PubMed  CAS  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–444

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1carboxylate (ACC) deaminase gene in Rhizobium from Southern Saskatchewan. Microbial Ecol 57:423–436

    Article  CAS  Google Scholar 

  • Dudeja SS, Suneja S, Khurana AL (1997) Iron acquisition system and its role in legume Rhizobium symbiosis. Indian J Microbiol 37:1–12

    Google Scholar 

  • Dullaart U (1970) The bioproduction of indole-3-acetic acid and related compounds in root nodules and roots of Lupinus luteus L. and by its rhizobial symbiont. Acta Bot Neerl 19:573–618

    CAS  Google Scholar 

  • Dyachok JV, Tobin AE, Price NPJ, von Arnold S (2000) Rhizobial Nod factors stimulated somatic embryo development in Picea abies. Plant Cell Rep 19:290–297

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2004) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. In: The “26th Southern Conservation Tillage Conference for Sustainable Agriculture”, June 8–9, 2004. J.S. Mckimmon Centre, North Carolina State University, Raleigh, NC, pp 58–66

    Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1992) Use of Bradyrhizobium japonicaum and fungicides in the control of root rot disease of sunflower. In: Ghaffar A, Shahzad S (eds) Proceedings of Status of Plant Pathology in Pakistan, Department of Botany, University of Karachi, Karachi − 75270, Pakistan, pp 261–266

    Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Ehteshamul-Haque S, Abid M, Sultana V, Ara J, Ghaffar A (1996) Use of organic amendments on the efficacy of biocontrol agents in the control of root rot and root knot disease complex of okra. Nematol Mediterran 24:13–16

    Google Scholar 

  • El-Tarabily KA, Soaud AA, Saleh ME, Matsumoto S (2006) Isolation and characterization of sulfur-oxidising bacteria, including strains of Rhizobium, from calcareous sandy soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Aust J Agric Res 57:101–111

    Article  CAS  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  PubMed  CAS  Google Scholar 

  • Ernesten A, Sabdverg G, Crozier A, Wheeler CT (1987) Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171:422–428

    Article  Google Scholar 

  • Etesami H, Alikhani HA, Jadidi M, Aliakbari A (2009a) Effect of superior IAA producing rhizobia on N, P, K uptake by wheat grown under greenhouse condition. World Appl Sci J 6:1629–1633

    CAS  Google Scholar 

  • Etesami H, Alikhani HA, Aliakbari A (2009b) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584

    CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  • Fernandez LS, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Vilar JJ, Burity HA, de Fanca FP (1999) Alleviation of water stress effects in cowpea by Bradyrhizobium spp. inoculation. Plant Soil 207:67–75

    Article  Google Scholar 

  • Fyson A, Oaks A (1990) Growth promotion of maize by legume soils. Plant Soil 122:259–266

    Article  Google Scholar 

  • Galal YGM (2003) Assessment of nitrogen availability to wheat (Triticum aestivum L.) from inorganic and organic N sources as affected by Azospirillum brasilense and Rhizobium leguminosarum inoculation. Egypt J Microbiol 38:57–73

    Google Scholar 

  • Galal YG, El-Gandaour JA, El-akel FA (2001) Stimulation of wheat growth and N fixation through Azospirillum and Rhizobium inoculation. A field trial with 15N techniques. In: Walter H, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach HE, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, von Wirén N, Wittenmayer L (eds) Plant nutrition-food security and sustainability of agroecosystems through basic and applied research. Kluwer Academic Publishers, Dordrecht, pp 666–667

    Google Scholar 

  • Galleguillos C, Aguire C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (A wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  PubMed  CAS  Google Scholar 

  • Gantar M, Elhai J (1999) Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol 141:373–379

    Article  Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez T, Alvarez C, Perez-Silva J (1984) Indol-3-acetic acid production by cell-free extracts of Rhizobium trifolii. Soil Biol Biochem 16:677–678

    Article  CAS  Google Scholar 

  • Garrette SD (1965) Towards the biological control of soil-borne plant pathogens. In: Baker KF, Snyder W (eds) Ecology of soil-borne plant pathogens. University of California Press, Los Angeles, pp 4–17

    Google Scholar 

  • Gaur Y, Sen A, Subba Rao N (1980) Improved legume-Rhizobium symbiosis by inoculating preceding cereal crop wirth Rhizobium. Plant Soil 54:313–316

    Article  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Pytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Molecular biotechnology: principles and applications of recombinant DNA, 3rd edn. ASM, Washington, DC

    Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    Article  CAS  Google Scholar 

  • Gopalaswamy G, Kannaiyan S, O’Callaghan KJ, Davey MR, Cocking EC (2000) The xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc R Soc Land B 267:103–107

    Article  CAS  Google Scholar 

  • Gough C, Webster G, Vasse J, Galera C, Batchelor C, O’Callaghan K, Davey M, Kothari S, Denarie J, Cocking J (1996) Specific flavonoids stimulate intercellular colonization of non-legumes by Azorhizobium caulinodans. In: Staceyh G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. International Society for Plant-Microbe Interactions, Saint Paul, pp 409–415

    Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Guerinot ML (1991) Iron uptake and metabolism in the rhizobia/legume symbioses. Plant Soil 130:199–209

    Article  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran S, Balachandar D, Mohanasundaram K (2004) Studies on synergism between Rhizobium, plant growth promoting rhizobacteria (PGPR) and phosphate solubilizing bacteria in blackgram. In: Kannaiyan S, Kumar K, Govimdarajan K (eds) Biofertilizer technology for rice based cropping system. Scientific Publishers, Jodhpur, pp 269–273

    Google Scholar 

  • Gupta A, Saxena AM, Gpal M, Tilak KVBR (1998) Effect of plant growth promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation. Microbiol Res 153:113–117

    Article  Google Scholar 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  CAS  Google Scholar 

  • Hafeez FY, Safdar ME, Chaudhry AU, Malik KA (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aust J Exp Agric 44:617–622

    Article  Google Scholar 

  • Hafeez FY, Hassan Z, Naeem F, Basher A, Kiran A, Khan SA, Malik KA (2008) Rhizobium leguminosarum bv.viciae strain LC-31: Analysis of novel bacteriocin and ACC-deaminase gene(s). In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, Dordrecht, pp 247–248

    Chapter  Google Scholar 

  • Haggag WM (2002) Sustainable agriculture management of plant diseases. J Biol Sci 2:280–284

    Article  Google Scholar 

  • Halder AK, Chakraborty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakraborty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    PubMed  CAS  Google Scholar 

  • Hara F, de Oliveira LA (2004) Physiological and ecological characteristics of rhizobio isolated deriving of acid and alic soils of Presidente Figueiredo. Acta Amazonica 34:343–357

    Article  Google Scholar 

  • Hilali A, Prevost D, Broughton WJ, Antoun A (2001) Effects de I’inoculation avec des souches de Rhizobium leguminosarum bv. trifolii sur la croissance du bl’e dans deux sols du Marco. Can J Microbiol 47:590–593

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Uber neure Erfahrungen und Probleme auf dem Gebiete der Bodenbakterriologie under besonderer berucksichtigung der Grundungung und brache. Arbeiten der Deutschen Landwritschafrtlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant-microbe symbioses. Plant Soil 194:171–184

    Article  CAS  Google Scholar 

  • Hoflich G (2000) Colonization and growth promotion of non-legumes by Rhizobium bacteria. Microbial Biosystems: New Frontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Soci. Microbial Ecol, Halifax, pp 827–830

    Google Scholar 

  • Hoflich G, Wiehe W, Kohn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experienca 50:897–905

    Article  Google Scholar 

  • Hoflich G, Wiehe W, Hecht-Buchholz C (1995) Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147

    Article  Google Scholar 

  • Hossain MS (2007) Potential use of rhizobium spp. to improve growth of non-nitrogen fixing plants. Masters thesis. Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

    Google Scholar 

  • Hossain MS, Martensson A (2008) Potential use of Rhizobium spp. to improve fitness of non-nitrogen-fixing plants. Acta Agric Scand B Soil Plant Sci 58:352–358

    Google Scholar 

  • Humphry DR, Andrews M, Santos SR, James EK, Vinogradova LV, Perin L, Reis VM, Cummings SP (2007) Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertilizer on graminaceous crops in Russia. Antonie Van Leeuwenhoek 91:105–113

    Article  PubMed  Google Scholar 

  • Hunter W, Kuykendall LD (1990) Enhanced nodulation and nitrogen fixation by a revertant of a nodulation-defective Bradyrhizobium japonicum tryptophan auxotroph. Appl Environ Microbiol 56:2399–2403

    PubMed  CAS  Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium species for improving growth and yield of rice. Soil Environ 28:49–55

    Google Scholar 

  • Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium and N2-fixation of winged bean and soybean. Sci Hortic 20:231–240

    Article  Google Scholar 

  • Jadhav RS, Thaker NV, Desai A (1994) Involvement of the siderophores of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Banos, Laguna, pp 119–140

    Google Scholar 

  • Janisiewicz WJ (1996) Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473–479

    Article  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2006) Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms. Soil Biol Biochem 38:405–408

    Article  CAS  Google Scholar 

  • Ji K-X, Chi F, Yang M-F, Shen S-H, Jing Y-X, Dazzo FB, Cheng H-P (2010) Movement of rhizobia inside tobacco and lifestyle alternation from endophytes to free-living rhizobia on leaves. J Microbiol Biotechnol 20:238–244

    Article  PubMed  CAS  Google Scholar 

  • Jing Y, Li G, Jin G, Shan X, Zhang B, Guan C, Li J (1990) Rice root odules with acetylene reduction activity. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, London, p 829

    Google Scholar 

  • Jing Y, Li G, Shan X (1992) Development of nodule-like structure on rice roots. In: Khush GS, Bennett J (eds) Nodulation and nitrogen fixation in rice. International Rice Research Institute, Manila, pp 123–126

    Google Scholar 

  • Jing Y-D, He Z-L, Yang X-E (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Z Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): Characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156:522–531

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genome sequence of nitrogen fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kaneshiro K, Slodki ME, Plattner RD (1983) Tryptophan catabolism of indolepyruvic and indole acetic acids by Rhizobium japonicum L-259 mutants. Curr Microbiol 8:301–306

    Article  CAS  Google Scholar 

  • Kavimandan SK (1985) Root nodule bacteria to improve yield of wheat. Plant Soil 86:141–144

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biolocial nitrogen fixation in non-leguminous field crops: Recent advances. Plant Soil 141:98–118

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khokhar SN, Qureshi A (1998) Interaction of Azorhizobium caulinodans with different rice cultivars for increased N2 fixation. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, London, pp 91–93

    Chapter  Google Scholar 

  • Khush GS, Bennett J (1992) Nodulation and nitrogen fixation in rice: potential and prospects International Rice Research Institute Press, Manila

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B Biol Sci 363:685–701

    Article  CAS  Google Scholar 

  • Kittell BL, HGelinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indole acetic acid production in Rhizobium meliloti. J Bacteriol 171:5458–5466

    PubMed  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology. Marcel Dekker, New York, pp 255–273

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France

    Google Scholar 

  • Kumar BSD, Berggren I, Martensson AM (2001) Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34

    Article  CAS  Google Scholar 

  • Ladha JK, Barraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 28:478–485

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Padre AT, Punzulan GC, Watanabe I (1987) Nitrogen-fixing (C2H2-reducing) activity and plant growth characters of 16 wetland rice varieties. Soil Sci Plant Nutr 33:91–106

    Article  Google Scholar 

  • Ladha JK, Garcia M, Miyan S, Padre AT, Watanabe I (1989) Survival of Azorhizobium caulinodans in the soils and rhizosphere of wetland rice under Sesbania rostrata rice rotation. Appl Environ Microbiol 55:454–460

    PubMed  CAS  Google Scholar 

  • Ladha JK, de Brujin FJ, Malik KA (1997) Introduction: Assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil 194:1–10

    Article  CAS  Google Scholar 

  • Law IJ, Strijdom BW (1989) Inoculation of cowpea and wheat with strains of Bradyrhizobium sp. that differ in their production of indole acetic acid. South Afr J Plant Soil 6:161–166

    CAS  Google Scholar 

  • Lemanceau P (1992) Effects benefiques de rhizobacteries sur les plantes: exemple des Pseudomonas spp. fluorescents. Agromomie 12:413–437

    Article  Google Scholar 

  • Li WX, Kodama O, Akatsuka T (1991) Role of oxygenated fatty acids in rice phytoalexin production. Agric Biol Chem 55:1041–1147

    Article  CAS  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Lopez-Lara IM, van Der Drift KKMGM, van Brussel AAN, Haverkamp J, Lugtenberg BJJ, Thomas-Oates JE, Spaink HP (1995) Induction of nodule primordial on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-rang Rhizobium strain GRH2. Plant Mol Biol 29:465–477

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clyton GW (2000) Endophytic rhizobia in barley and canola in rotation with field peas. In: Proceedings of the 17th North American conference on symbiotic nitrogen fixation. Laval University, Quebec, Canada, p 80

    Google Scholar 

  • Lupwayi NZ, Clyton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45

    Article  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester

    Google Scholar 

  • Lynch JM, Clark SJ (1984) Effects of microbial colonization of barley (Hordeum vulgare L.) roots on seedling growth. J Appl Bacteriol 56:47–52

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhoizsphere. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 15–24

    Chapter  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003a) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003b) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83:285–291

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Carles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane − 1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu JH, Sa TM (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in rice plant. Microbes Environ 23:109–117

    Article  PubMed  Google Scholar 

  • Martens R (1982) Apparatus to study the quantitative relationships between root exudates and microbial populations in the rhizosphere. Soil Biol Biochem 14:315–317

    Article  Google Scholar 

  • Martinez-Romero E, Wang ET, Lopez-Merino A, Caballero-Mellado J, Rogel MA, Gandara B, Toledo I, Martinez-Romero J (2000) Ribosomal gene based phylogenies on trial: the case of Rhizobium and related genera. In: de Wild PJGM, Bisseling T, Stiekema WJ (eds) Biology of plant-microbe interactions, vol 2. International Society for Molecular Plant-Microbe Interactions, St. Paul, pp 59–64

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • Matiru VN, Dakora FD (2005a) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165:847–855

    Article  PubMed  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2005b) The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol 166:439–444

    Article  PubMed  CAS  Google Scholar 

  • Matiru VN, Jaffer MA, Dakora FD (2000) Rhizobial colonization of roots of African Landraces of sorghum and millet and the effect of sorghum growth and P nutrition. In: Proceedings of the 4th congress of the African Association for biological nitrogen fixation: imperatives for BNF research and application in Africa for the 21st century. African Association for Biological Nitrogen Fixation, Nairobi, Kenya, pp 99–100

    Google Scholar 

  • Matiru VN, Jaffer MA, Dakora FD (2005) Rhizobial infection of African landraces of sorghum (Sorghum bicolor L.) and finger millet (Eleucine coracana L.) promotes plant growth and alters tissue nutrient concentration under axenic conditions. Symbiosis 40:7–15

    CAS  Google Scholar 

  • Matzanke BF, Muller-Matzanke G, Raymond KN (1989) Siderophore mediated iron transport. Phys Bioinorg Chem Ser 5:1–121

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Mehboob I, Zahir ZA, Mahboob A, Shahzad SM, Jawad A, Arshad M (2008) Preliminary screening of rhizobium isolates for improving growth of maize seedlings under axenic conditions. Soil Environ 27:64–71

    Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA (2009) Rhizobial association with non-legumes: mechanisms and applications. Crit Rev Plant Sci 28:432–456

    Article  CAS  Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn R, Rosenberg NJ (1994) Framework for integrated assessments of global warming impacts. Clim Chang 28:15–44

    Article  CAS  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2009) Enhanced emergence and vigor seedling production of rice through growth promoting bacterial inoculation. Res J Seed Sci 2:96–104

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009

    Google Scholar 

  • Mikanova O, Novakova J (2002) Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostl Výroba 48:97–400

    Google Scholar 

  • Minamisawa K, Ogawa KI, Fukuhara H, Koga J (1996) Indolepyruvate pathway for indol-3 acetic acid biosynthesis in Bradyrhizobium elkanii. Plant Cell Physiol 37:449–453

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275

    Article  CAS  Google Scholar 

  • Mishra RPN, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    Article  PubMed  CAS  Google Scholar 

  • Monteleone M, Thuar A, Olmedo C (2003) Efecto de la promoción del crecimiento con PGPRs en un cultivo de trigo en presencia de B. japonicum. Actas de la IV Reunión Nacional Científico Técnica de Biología de Suelos, Santiago del Estero, Argentina. CD-ROM. ISBN 097-99083-6-8

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZH, Saud HM, Ismail MR (2009) Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agric Biol 11:586–590

    Google Scholar 

  • Naidu VSGR, Panwar JDS, Annapurna K (2004) Effect of synthetic auxins and Azorhizobium caulinodans on growth and yield of rice. Indian J Microbiol 44:211–213

    CAS  Google Scholar 

  • Natalia K, Gennady K, Vitaly K (1994) Endophytic association of nitrogen-fixing bacteria with plants. In: Proceedings 1st European N2-fixation conference, Szeged, Hungary, p 104

    Google Scholar 

  • Nautiyal CS (1997) A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Curr Microbiol 34:12–17

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal CS (2000) Biocontrol of plant diseases for agricultural management. In: Upadhyay RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. Kluwer Academic/Plenum Publishers, New York, pp 9–23

    Chapter  Google Scholar 

  • Newcomb W, Syono K, Torrey JG (1977) Development of an ineffective pea root nodule: morphogenesis, fine structure and cytokinin biosynthesis. Can J Bot 55:1891–1907

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Nieuwenhove CV, Holm LV, Kulasooriya SA, Vlassak K (2000) Establishment of Azorhizobium caulinodans in rhizosphere of wet land rice. Biol Fertil Soils 31:143–149

    Article  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hunes MF (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191

    Article  PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Okazaki S, Yuhashi K, Minamisawa K (2003) Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. FEMS Microbiol Ecol 45:155–160

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Sugawara M, Minamisawa K (2004) Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl Environ Microbiol 70:535–541

    Article  PubMed  CAS  Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1141

    CAS  Google Scholar 

  • Parveen S, Ghaffar A (1991) Effect of microbial antagonists in the control of root rot of tomato. Pak J Bot 23:187–190

    Google Scholar 

  • Parveen S, Ehteshamul-Haque S, Ghaffar A (1993) Biological control of Melodidogyne javanica on tomato and okra in soil infested with Fusarium oxysporum. Pak J Nematol 11:151–156

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-barrueco C, Martinez-Molina E, Velaqez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pena HB, Reyes I (2007) Nitrogen fixing bacteria and phosphate solubilizers isolated in lettuce (Lactuca sativa L.) and evaluated as plant growth promoters. Intersciencia 32:560–565

    Google Scholar 

  • Pena-Cabriales JJ, Alexander M (1983) Growth of Rhizobium in unamended soil. Soil Sci Soc Am J 47:81–84

    Article  Google Scholar 

  • Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Argon J 94:925–929

    Google Scholar 

  • Pereira JAR, Cavalcante VA, Baldani JI, Dobereiner J (1988) Field inoculation of sorghum and rice with Azorhizobium spp. and Herbaspirillum seropedicae. Plant Soil 110:269–274

    Article  Google Scholar 

  • Perrine FM, Prayito J, Frank JJ, Dazzo B, Rolfe BG (2001) Rhizobium plasmids are involved in the inhibition or stimulation of rice growth and development. Aust J Plant Physiol 28:923–937

    CAS  Google Scholar 

  • Perrine FM, Hocart CH, Hynes MF, Rolfe BG (2005) Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Environ Microbiol 7:1826–1838

    Article  PubMed  CAS  Google Scholar 

  • Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007a) Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Mol Plant Microbe Interact 20:283–292

    Article  PubMed  CAS  Google Scholar 

  • Perrine-Walker FM, Prayitno J, Rolfe BG, Weinman JJ, Hocart CH (2007b) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58:3343–3350

    Article  PubMed  CAS  Google Scholar 

  • Perrine-Walker FM, Hynes MF, Rolfe BG, Hocart CH (2009) Strain competition and agar affect the interaction of rhizobia with rice. Can J Microbiol 55:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA, Torrey JG (1970) Cytokinin production by Rhizobium japonicum. Plant Physiol 23:1057–1063

    Article  CAS  Google Scholar 

  • Phillips DA, Torrey JG (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49:11–15

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA, Joseph CM, Yang G-P, Martinez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Nat Acad Sci USA 96:12275–12280

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA, Kipe-Nolt JA, Rojas E (1994) Rhizobium inoculation increases of bean and maize yields in intercrops on farms in the Peruvian Sierra. Exp Agric 30:311–319

    Article  Google Scholar 

  • Plazinski J, Rolfe BG (1985a) Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Appl Environ Microbiol 49:984–989

    PubMed  CAS  Google Scholar 

  • Plazinski J, Rolfe BG (1985b) Interaction of Azospirillum and Rhizobium strains leading to inhibition of nodulation. Appl Environ Microbiol 49:990–993

    PubMed  CAS  Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Article  Google Scholar 

  • Prasad H, Chandra R (2003) Growth pattern of urdbean Rhizobium sp. with PSB and PGPR in consortia. J Indian Soc Soil Sci 51:76–78

    Google Scholar 

  • Prayitno J, Stefaniak J, McIver J, Weinman JJ, Dazzo FB, Ladha JK, Barraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535

    Article  Google Scholar 

  • Prevost D, Saddiki S, Antoun H (2000) Growth and mineral nutrition of corn inoculated with effective strains of Bradyrhizobium japonicum. http://www.ag.auburn ed/∼mlowens/argentina/pdf%20manuscripts/prevost.pdf. Accessed on 25 Dec 2010

  • Prithiviraj B, Zhou X, Souleimanov A, Smith DL (2000) Nod Bj V (C18: 1 MeFuc) a host specific bacterial-to-plant signal molecule, enhances germination and early growth of divers crop plants. In: 17th North American conference on symbiotic nitrogen fixation, 23–28 July, 2000, Quebec, University of Laval, Canada p 6

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky GK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. 1. Root colonization and weathering of igneous rock. Plant Soil 6:629–642

    CAS  Google Scholar 

  • Puppo A, Riguard J (1978) Cytokinins and morphological aspects of French-bean roots in the presence of Rhizobium. Physiol Plantarum 42:202–206

    Article  CAS  Google Scholar 

  • Quispel A (1991) A critical evaluation of the prospects for nitrogen fixation with non-legumes. Plant Soil 137:1–11

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battle field for soilborne pathogens and beneficial microorganisms. Plant Soil 32:341–361

    Article  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1163

    Article  PubMed  CAS  Google Scholar 

  • Ray PK, Jana AK, Maitra DN, Saha MN, Chaudhury J, Saha S, Saha AR (2000) Fertilizer prescriptions on soil test basis for jute, rice and wheat in Typic Ustochrept. J Indian Soc Soil Sci 48:79–84

    Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, deBruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81–89

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Disease Protect 115:108–113

    Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 19:181–188

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora sub sp. Atroseptica Appl Environ Microbiol 68:2261–2268

    Article  CAS  Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toto M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytol 136:667–677

    Article  Google Scholar 

  • Reyes VG, Schmidt EL (1979) Population densities of Rhizobium japonicum strain 123 estimated directly in soil and rhizosphere. Appl Environ Microbiol 37:854–858

    PubMed  CAS  Google Scholar 

  • Ridge RW, Bender GL, Bolefe BG (1992) Nodule-like structures induced on roots of wheat seedlings by addition of synthetic auxin 2,4-dichlorophenoxy acetic acid and the effects of microorganisms. Aust J Plant Physiol 19:481–492

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Rodelas B, Salmeron V, Martinez-Toledo MV, Gonzalez-Lopez J (1993) Production of vitamins by Azospirillum brasilense in chemically defined media. Plant Soil 153:97–101

    Article  CAS  Google Scholar 

  • Rodelas B, Gonzalez-Lopez J, Salmeron V, Pozo C, Martinez-Toledo MV (1996) Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia faba L.) by combined inoculation with Rhizobium leguminosarum bv. viceae and Azospirillum brasilense. Symbiosis 21:175–186

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Roger PA, Watanabe IW (1986) Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors. Fert Res 9:39–77

    Article  Google Scholar 

  • Rolfe BG, Bender GL (1990) Evolving a Rhizobium for non-legume nodulation. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, London, pp 779–786

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  PubMed  CAS  Google Scholar 

  • Sabry RS, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond 264:341–346

    Article  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  CAS  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Curr Sci 92:317–322

    CAS  Google Scholar 

  • Saikia SP, Srivastava GC, Jain V (2004) Nodule-like structures induced on the roots of maize seedlings by the addition of synthetic auxin 2,4-D and its effects on growth and yield. Cereal Res Commun 32:83–89

    CAS  Google Scholar 

  • Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

    Article  PubMed  CAS  Google Scholar 

  • Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342

    Article  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant growth promoting Rhizobium leguminosarum bv. trifolii R39 studied with mono-specific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed  CAS  Google Scholar 

  • Schwinghamer EA, Belkengren RP (1968) Inhibition of Rhizobia by a strain of Rhizobium trifolii: some properties of the antibiotic and of the strain. Arch Microbiol 64:130–145

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP, Sangeetha H, Kannaiyan S (2008) Induction of endophytic colonization in rice (Oryza sativa L.) tissue culture plant by Azorhizobium caulinodans. Biocontrol Lett 30:1477–1487

    CAS  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. CvCO-43). Microbiol Res 164:92–104

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Kennedy C (2000) Colonization of rice and other cereals by Acetobacter diazotrophicus, an endophyte of sugarcane. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila, pp 151–165

    Google Scholar 

  • Shao H-B, Chu L-Y, Ruan C-J, Li H, Guo D-G, Li W-X (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    Article  CAS  Google Scholar 

  • Shaukat SS, Siddqui IA (2003) The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato. Lett Appl Microbiol 36:392–398

    Article  PubMed  CAS  Google Scholar 

  • Sheikh LI, Dawar S, Zaki MJ, Ghaffar A (2006) Efficacy of Bacillus thuringiensis and Rhizobium meliloti with nursery fertilizers in the control of root infecting fungi on mung bean and okra plants. Pak J Bot 38:465–473

    Google Scholar 

  • Shimshick EJ, Hebert RR (1979) Binding characteristics of N2-fixing bacteria to cereal roots. Appl Environ Microbiol 38:447–453

    PubMed  CAS  Google Scholar 

  • Siddiqui ZA (2007) Biocontrol of Alternaria triticina by plant growth promoting rhizobacteria on wheat. Arch Phytopathol Plant Protec 40:301–308

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresource Technol 79:41–45

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1998) Effect of Rhizobia and fungal antagonists in the control of root infecting fungi on sunflower and chickpea. Pak J Bot 30:279–286

    Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Zaki MJ, Ghaffar A (2000) Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad J Agric 16:403–406

    Google Scholar 

  • Sierra S, Rodelas B, Martinez-Toledo MV, Pozo C, Gonzalez-Lopez J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858

    Article  CAS  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant growth promoting effects of Pseudomonas sp. on co-inoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Singh R, Kumar V, Sharma S, Behl RK, Singh BP, Narula N (2005) Performance and persistence of green fluorescent protein (gfp) marked Azotobacter chroococcum in sterilized and unsterilized wheat rhizospheric soil. Chinese J Appl Environ Biol 11:751–755

    CAS  Google Scholar 

  • Singh RK, Mishra RPN, Jaiswal HK, Kumar V, Pandev SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizae: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Smith DL, Prithiviraj B, Zhang F (2002) Rhizobial signals and control of plant growth. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation: global perspectives. CABI Publishing, Wallingford, pp 327–330

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love prade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Souleimanov A, Prithiviraj B, Smith DL (2002) The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J Exp Bot 53:1929–1934

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1992) Rhizobial lipo-oligosaccharide: answers and questions. Plant Mol Biol 20:977–986

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP, Lugtenberg BJJ (1994) Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. Plant Mol Biol 26:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Spencer D, James EK, Ellis GJ, Shaw JE, Sprent JI (1994) Interactions between rhizobia and potato tissues. J Exp Bot 45:1475–1482

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijin FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Hurek T, Vinuesa P, Muller P, Ladha JK, Reinhold-Hurek B (2001a) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCP. Appl Environ Microbiol 67:3655–3664

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001b) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    Article  PubMed  CAS  Google Scholar 

  • Terouchi N, Syono K (1990) Rhizobium attachment and curling in asparagus, rice, and oat plants. Plant Cell Physiol 31:119–127

    Google Scholar 

  • Trinick MJ (1979) Structure of nitrogen fixing nodules of Rhizobium on roots of Parasponia andersonii. Can J Microbiol 25:565–578

    Article  PubMed  CAS  Google Scholar 

  • Trinick MJ, Habdodas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. on legumes grown in tropical soils. Plant Soil 172:207–219

    Article  CAS  Google Scholar 

  • Trott S, Bauer R, Knackmuss HJ, Stolz A (2001) Genetic and biochemical characterization of an enantioselective amidase from Agrobacterium tumefaciens strain d3. Microbiology 147:1815–1824

    PubMed  CAS  Google Scholar 

  • Tu JC (1978) Protection of soybean from severe Phytophthora root rot by Rhizobium. Physiol Plant Pathol 12:233–240

    Article  Google Scholar 

  • Tu JC (1979) Evidence of differential tolerance among some root rot fungi to rhizobial parasitism in vitro. Physiol Plant Pathol 14:171–177

    Article  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Suga Y, Yahir N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  Google Scholar 

  • Upadhyaya NM, Letham DS, Parker CW, Hocart CH, Dart PJ (1991) Do rhizobia produce cytokinins? Biochem Int 24:123–130

    PubMed  CAS  Google Scholar 

  • Valdes M, Reza-Aleman F, Furlan V (1993) Response of Leucaena esculenta to endomycorrhizae and Rhizobium inoculation. World J Microbiol Biotechnol 9:97–99

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Luciane AB, Passaglia MP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do sul state. R Bras Ci Solo 33:1227–1235

    Article  Google Scholar 

  • Velazquez E, Peix A, Zurdo-Pin˜eiro JL, Palomo JL, Mateos PF, Rivas R, Munoz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumours or hairy roots in plants. Mol Plant Microbe Interact 18:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Venieraki A, Dimou M, Pergalis P, Kefalogianni I, Chatzipavlidis I, Katinakis P (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microbial Ecol 61:277–285

    Article  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    Article  PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescence for biocontrol of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1999) Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Technol 9:67–74

    Article  Google Scholar 

  • Wang TI, Wood EA, Brewin NJ (1982) Growth regulators, Rhizobium and nodulation in peas: Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta 155:345–349

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1- aminocyclopropane 1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR, Denarie J, Cocking EC (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: Role in phytoremediation of metal-polluted soils. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Heidelberg, pp 273–303

    Google Scholar 

  • Werner D (1992) Symbiosis of Plants and Microbes. Chapman and Hall, London

    Google Scholar 

  • West PM, Wilson PW (1938) Synthesis of growth factors by Rhizobium trifolii. Nature 142:397–398

    Article  CAS  Google Scholar 

  • West SA, Kiers ET, Simms EL, Denision RF (2002) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R SocLond 269:685–694

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CL, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104

    Article  CAS  Google Scholar 

  • Wiehe W, Hoflich G (1995) Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to noninoculated plants under field conditions in northeast Germany. Microbiol Res 150:201–206

    Article  Google Scholar 

  • Wiehe W, Hecht-Buchholz C, Hoflich G (1994) Electron microscopic investigations on root colonization of Lupinus albus and Pisum sativum with two associative plant growth promoting rhizobacteria. Pseudomonas fluorescens and Rhizobium leguminosarum bv. trifolii. Symbiosis 17:15–31

    Google Scholar 

  • Wood M, Cooper JE (1984) Aluminum toxicity and multiplication of Rhizobium trifolii in a defined growth medium. Soil Biol Biochem 16:571–576

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

  • Xie Z-P, Staehlin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    PubMed  CAS  Google Scholar 

  • Yagi K (1962) Chemical determination of flavins. In: Glick D (ed) Methods of biochemical analysis, vol X. Interscience Publishers, London, pp 319–356

    Chapter  Google Scholar 

  • Yanagita T, Foster JW (1956) A bacterial riboflavin hydrolase. J Biol Chem 221:593–607

    PubMed  CAS  Google Scholar 

  • Yang G, Bhuvaneswari TV, Joseph CM, King MD, Phillips DA (2002) Roles for riboflavin in the Sinorhizobium-alfalfa association. Mol Plant Microbe Interact 5:456–462

    Article  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Dazzo FB (1995) Endorhizosphere colonization and growth promotion of indica and japonica rice varieties by Rhizobium leguminosarum bv. trifolii. In: Proceedings of the 15th symbiotic nitrogen fixation conference, North Carolina State University, Raleigh, NC, p 17

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni Y, Rizk R, Maya-Flores J, Dazzo F (2000) Potential of the rice root occupant Rhizobium leguminosarum bv. trifolii as plant growth promoting biofertilizer for rice. In: Proceedings of the 17th North American conference on symbiotic nitrogen fixation, Universitie Laval., Quebec, Canada, p 79

    Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Gracia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yasutu T, Okazaki S, Mitrsui H, Yuhashi K, Ezura E, Minamisawa K (2001) DNA sequence and mutational analysis of rhizobitoxine biosynthesis gene in Bradyrhizobium elkanii. Appl Environ Microbiol 67:4999–5009

    Article  Google Scholar 

  • You M, Nishiguchi T, Saito A, Isawa T, Mitsui H, Minamisawa K (2005) Expression of the nifH gene of a Herbaspirillum endophyte in wild rice species: daily rhythm during the light–dark cycle. Appl Environ Microbiol 71:8183–8190

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Kennedy IR (1995) Nitrogenase activity (C2H2 reduction) of Azorhizobium in 2,4-D-induced root structures of wheat. Soil Biol Biochem 27:459–462

    Article  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT Jr (2004) Plant Growth Promoting Rhizobacteria: Applications and Perspectives in Agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (2001) Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv Agron 76:125–161

    Article  Google Scholar 

  • Zhang X, Nick G, Kaijalainen S, Lonnqvist C, Tas E, Tighe SW, Graham PH, Lindstrom K (1997) Diversity of peanut Rhizobium isolated from Sichuan, China. In: Proceedings of the 11th international congress on nitrogen fixation, Institut Pasteur, Paris, France, p 49

    Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ijaz Mehboob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mehboob, I., Naveed, M., Zahir, Z.A., Ashraf, M. (2012). Potential of Rhizobia for Sustainable Production of Non-legumes. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_26

Download citation

Publish with us

Policies and ethics