Skip to main content

Algebraic Flux Correction I

Scalar Conservation Laws

  • Chapter

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusive part of the discrete operator into numerical fluxes and limit these fluxes in a conservative way. The purpose of this manipulation is to make the antidiffusive term local extremum diminishing. The available limiting techniques include a family of implicit FCT schemes and a new linearity-preserving limiter which provides a unified treatment of stationary and time-dependent problems. The use of Anderson acceleration makes it possible to design a simple and efficient quasi-Newton solver for the constrained Galerkin scheme. We also present a linearized FCT method for computations with small time steps. The numerical behavior of the proposed algorithms is illustrated by a grid convergence study for convection-dominated transport problems and anisotropic diffusion equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12, 547–560 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arioli, M., Loghin, D., Wathen, A.J.: Stopping criteria for iterations in finite element methods. Numer. Math. 99, 381–410 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arminjon, P., Dervieux, A.: Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids. INRIA Research Report 1111 (1989)

    Google Scholar 

  4. Baum, J.D., Löhner, R.: Numerical simulation of pilot/seat ejection from an F-16. AIAA Paper, 93-0783 (1993)

    Google Scholar 

  5. Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Constrained-optimization based data transfer: a new perspective on flux correction. Chap. 10 in this volume. doi:10.1007/978-94-007-4038-9_10

  6. Boris, J.P., Book, D.L.: Flux-Corrected Transport: I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  ADS  MATH  Google Scholar 

  7. Book, D.L.: The conception, gestation, birth, and infancy of FCT. Chap. 1 in this volume. doi:10.1007/978-94-007-4038-9_1

  8. Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport: II. Generalizations of the method. J. Comput. Phys. 18, 248–283 (1975)

    Article  ADS  MATH  Google Scholar 

  9. Boris, J.P., Book, D.L.: Flux-Corrected Transport: III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397–431 (1976)

    Article  ADS  MATH  Google Scholar 

  10. Carette, J.-C., Deconinck, H., Paillère, H., Roe, P.L.: Multidimensional upwinding: its relation to finite elements. Int. J. Numer. Methods Fluids 20, 935–955 (1995)

    Article  ADS  MATH  Google Scholar 

  11. Catabriga, L., Coutinho, A.L.G.A.: Implicit SUPG solution of Euler equations using edge-based data structures. Comput. Methods Appl. Mech. Eng. 191, 3477–3490 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ciarlet, P.G., Raviart, P.-A.: Maximum principle and convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Dietachmayer, G.S.: A comparison and evaluation of some positive definite advection schemes. In: Noyle, J., May, R. (eds.) Computational Techniques and Applications, pp. 217–232. Elsevier, Amsterdam (1986)

    Google Scholar 

  14. DeVore, C.R.: An improved limiter for multidimensional flux-corrected transport. NASA Technical Report AD-A360122 (1998)

    Google Scholar 

  15. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester (2003)

    Book  Google Scholar 

  16. Donea, J., Giuliani, S., Laval, H., Quartapelle, L.: Time-accurate solution of advection-diffusion equations by finite elements. Comput. Methods Appl. Mech. Eng. 193, 123–145 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. Eyert, V.: A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comput. Phys. 124, 271–285 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fang, H., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16, 197–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Faragó, I., Horváth, R., Korotov, S.: Discrete maximum principle for linear parabolic problems solved on hybrid meshes. Appl. Numer. Math. 53, 249–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37, 225–243 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fletcher, C.A.J.: A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers’ equations. J. Comput. Phys. 51, 159–188 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Godunov, S.K.: Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  23. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Hansbo, P.: Aspects of conservation in finite element flow computations. Comput. Methods Appl. Mech. Eng. 117, 423–437 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Hubbard, M.E.: Non-oscillatory third order fluctuation splitting schemes for steady scalar conservation laws. J. Comput. Phys. 222, 740–768 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Jameson, A.: Computational algorithms for aerodynamic analysis and design. Appl. Numer. Math. 13, 383–422 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jameson, A.: Analysis and design of numerical schemes for gas dynamics 1. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn. 4, 171–218 (1995)

    Article  Google Scholar 

  31. Jemcov, A., Maruszewski, J.P.: Algorithm stabilization and acceleration in computational fluid dynamics: exploiting recursive properties of fixed point algorithms. In: Amano, R.S., Sundén, B. (eds.) Computational Fluid Dynamics and Heat Transfer. WIT Press, Southampton (2010)

    Google Scholar 

  32. John, V., Schmeyer, E.: On finite element methods for 3D time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198, 475–494 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Karátson, J., Korotov, S.: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99, 669–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karátson, J., Korotov, S., Křížek, M.: On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simul. 76, 99–108 (2007)

    Article  MATH  Google Scholar 

  35. Kuzmin, D.: Positive finite element schemes based on the flux-corrected transport procedure. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 887–888. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  36. Kuzmin, D.: On the design of general-purpose flux limiters for implicit FEM with a consistent mass matrix. I. Scalar convection. J. Comput. Phys. 219, 513–531 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Kuzmin, D.: Algebraic flux correction for finite element discretizations of coupled systems. In: Oñate, E., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering II, CIMNE, Barcelona, pp. 653–656 (2007)

    Google Scholar 

  38. Kuzmin, D.: On the design of algebraic flux correction schemes for quadratic finite elements. J. Comput. Appl. Math. 218(1), 79–87 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228, 2517–2534 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233, 3077–3085 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Kuzmin, D.: A Guide to Numerical Methods for Transport Equations. University Erlangen-Nuremberg, Erlangen (2010). http://www.mathematik.uni-dortmund.de/~kuzmin/Transport.pdf

    Google Scholar 

  42. Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. (2012, to appear)

    Google Scholar 

  43. Kuzmin, D., Möller, M.: Algebraic flux correction I. Scalar conservation laws. In: Kuzmin, D., et al. (eds.) Flux-Corrected Transport: Principles, Algorithms, and Applications, pp. 155–206. Springer, Berlin (2005)

    Chapter  Google Scholar 

  44. Kuzmin, D., Möller, M.: Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems. J. Comput. Appl. Math. 233, 3113–3120 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175, 525–558 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198, 131–158 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Kuzmin, D., Möller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Methods Appl. Mech. Eng. 193, 4915–4946 (2004)

    Article  ADS  MATH  Google Scholar 

  48. Kuzmin, D., Shashkov, M.J., Svyatskiy, D.: A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems. J. Comput. Phys. 228, 3448–3463 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  49. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Yu.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 492–512 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Löhner, R.: Applied CFD Techniques: An Introduction Based on Finite Element Methods, 2nd edn. Wiley, Chichester (2008)

    Google Scholar 

  52. Löhner, R.: Edges, stars, superedges and chains. Comput. Methods Appl. Mech. Eng. 111, 255–263 (1994)

    Article  ADS  MATH  Google Scholar 

  53. Löhner, R., Galle, M.: Minimization of indirect addressing for edge-based field solvers. Commun. Numer. Methods Eng. 18(5), 335–343 (2002)

    Article  MATH  Google Scholar 

  54. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 1093–1109 (1987)

    Article  MATH  Google Scholar 

  55. Löhner, R., Morgan, K., Vahdati, M., Boris, J.P., Book, D.L.: FEM-FCT: combining unstructured grids with high resolution. Commun. Appl. Numer. Methods 4, 717–729 (1988)

    Article  MATH  Google Scholar 

  56. Luo, H., Baum, J.D., Löhner, R., Fast, A.: Matrix-free implicit method for compressible flows on unstructured grids. J. Comput. Phys. 146, 664–690 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Lyra, P.R.M.: Unstructured grid adaptive algorithms for fluid dynamics and heat conduction. PhD thesis, University of Wales, Swansea (1994)

    Google Scholar 

  58. Lyra, P.R.M., Willmersdorf, R.B., Martins, M.A.D., Coutinho, A.L.G.A.: Parallel implementation of edge-based finite element schemes for compressible flow on unstructured grids. In: Proceedings of the 3rd International Meeting on Vector and Parallel Processing, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 21–23 Juni (1998)

    Google Scholar 

  59. Mer, K.: Variational analysis of a mixed element/volume scheme with fourth-order viscosity on general triangulations. Comput. Methods Appl. Mech. Eng. 153, 45–62 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Möller, M.: Hochauflösende FEM-FCT-Verfahren zur Diskretisierung von konvektionsdominanten Transportproblemen mit Anwendung auf die kompressiblen Eulergleichungen. Diploma thesis, University of Dortmund (2003)

    Google Scholar 

  61. Möller, M.: Efficient solution techniques for implicit finite element schemes with flux limiters. Int. J. Numer. Methods Fluids 55, 611–635 (2007)

    Article  MATH  Google Scholar 

  62. Ni, P.: Anderson acceleration of fixed-point iteration with applications to electronic structure computations. PhD thesis, Worcester Polytechnic Institute (2009)

    Google Scholar 

  63. Schär, C., Smolarkiewicz, P.K.: A synchronous and iterative flux-correction formalism for coupled transport equations. J. Comput. Phys. 128, 101–120 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  65. Parrott, A.K., Christie, M.A.: FCT applied to the 2-D finite element solution of tracer transport by single phase flow in a porous medium. In: Numerical Methods for Fluid Dynamics, pp. 609–619. Oxford University Press, London (1986)

    Google Scholar 

  66. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  67. Peraire, J., Vahdati, M., Peiro, J., Morgan, K.: The construction and behavior of some unstructured grid algorithms for compressible flows. In: Numerical Methods for Fluid Dynamics, IV, pp. 221–239. Oxford University Press, Oxford (1993)

    Google Scholar 

  68. Selmin, V.: Finite element solution of hyperbolic equations. I. One-dimensional case. INRIA Research Report 655 (1987)

    Google Scholar 

  69. Selmin, V.: Finite element solution of hyperbolic equations. II. Two-dimensional case. INRIA Research Report 708 (1987)

    Google Scholar 

  70. Selmin, V.: The node-centred finite volume approach: bridge between finite differences and finite elements. Comput. Methods Appl. Mech. Eng. 102, 107–138 (1993)

    Article  ADS  MATH  Google Scholar 

  71. Selmin, V., Formaggia, L.: Unified construction of finite element and finite volume discretizations for compressible flows. Int. J. Numer. Methods Eng. 39, 1–32 (1996)

    Article  MATH  Google Scholar 

  72. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. van Slingerland, P.: An accurate and robust finite volume method for the advection diffusion equation. M.Sc. thesis, Delft University of Technology (June 2007)

    Google Scholar 

  75. van Slingerland, P., Borsboom, M., Vuik, C.: A local theta scheme for advection problems with strongly varying meshes and velocity profiles. Report 08-17, Department of Applied Mathematical Analysis, Delft University of Technology (June 2008)

    Google Scholar 

  76. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  77. Walker, H.W., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49, 1715–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Kuzmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuzmin, D. (2012). Algebraic Flux Correction I. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4038-9_6

Download citation

Publish with us

Policies and ethics